COMPSCI 320 : Applied Algorithmics
Science
2025 Semester Two (1255) (15 POINTS)
Course Prescription
Course Overview
In this course, you will explore the fundamental design techniques used for efficient algorithmic problem-solving and software development. Methods that yield algorithms that are both provably correct and efficient, the efficiency of algorithms to provide a basis for deciding which algorithm is best for the job, limits on the power of computers, and the theory of NP-completeness will also be covered. Students will be introduced to methods whose correctness or performance is not guaranteed.
Algorithmics is the systematic study of the design and analysis of algorithms. It deals with such fundamental questions as: How do we go about designing an algorithm for a given problem? Is the algorithm correct? Does it perform efficiently? Is it the best possible for the job? Is there any good algorithm for this problem? It has been said that algorithms form the soul of computer science. Certainly, the study of algorithms is a fundamental activity of a computer scientist for society.
The skills developed in this course are particularly useful for those wishing to have a career involving efficient programming, problem-solving and data science. The class is considered essential for all students interested in continuing to graduate programmes in computer science, as it covers ACM curriculum core topics deemed required within the area of algorithms for every computer science undergraduate major.
Capabilities Developed in this Course
Capability 3: | Knowledge and Practice |
Capability 4: | Critical Thinking |
Capability 5: | Solution Seeking |
Capability 6: | Communication |
Learning Outcomes
- Define clearly a computational problem (with input, output, and I/O constraint) and discuss how an efficient algorithm for solving the latter problem would help to resolve the original problem - when given a "real-world" problem. Consider social ramifications of your solution model. (Capability 3, 4 and 5)
- Design an algorithm guaranteed to solve a computational problem by using a given design technique from: greedy, divide/conquer, dynamic programming, randomized, exhaustive search (Capability 4 and 5)
- Estimate rigorously the big-Theta running time of a simple algorithm devised as above (Capability 3 and 4)
- Determine whether a given computational problem can be solved by a standard algorithmic technique as above, and if so, choose the most promising technique (Capability 3 and 5)
- Determine whether a given difficult computational problem can be mapped by standard methods to an NP-hard algorithmic problem; formally communicate your problem reduction (Capability 4, 5 and 6)
Assessments
Assessment Type | Percentage | Classification |
---|---|---|
Assignments | 40% | Individual Coursework |
Final Exam | 50% | Individual Examination |
Test | 10% | Individual Examination |
3 types | 100% |
Assessment Type | Learning Outcome Addressed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||||
Assignments | ||||||||||
Final Exam | ||||||||||
Test |
Need to get 50% in both the practical and theory components of the course to pass.
Key Topics
- Algorithm design techniques, including Greedy, Divide-Conquer, Dynamic Programming, Network Flow, and Randomisation
- NP-completeness/hardness and intractability
Special Requirements
Need to know how to program efficiently in one of the following languages: Python, C++, Rust, Java, Go, C#
Workload Expectations
This course is a standard 15-point course and students are expected to spend 10 hours per week involved in each 15-point course that they are enrolled in.
For this course, per week, you can expect:
- 3 hours of lectures
- A 1-hour tutorial (optional)
- 4 hours of reading and thinking about the content
- 4 hours of work on assignments and/or test preparation
Delivery Mode
Campus Experience
Attendance is encouraged for both lectures and tutorials.
Lectures will be available as recordings. Other learning activities, including tutorials, will not be available as recordings.
The course may include live online events including group discussions/tutorials.
Attendance on campus is required for the test and exam.
The activities for the course are scheduled as a standard weekly timetable delivery.
Learning Resources
Course materials are made available in a learning and collaboration tool called Canvas which also includes reading lists and lecture recordings (where available).
Please remember that the recording of any class on a personal device requires the permission of the instructor.
Various textbooks on algorithms, lecture slides, automarker.cs.auckland.ac.nz
Student Feedback
During the course Class Representatives in each class can take feedback to the staff responsible for the course and staff-student consultative committees.
At the end of the course students will be invited to give feedback on the course and teaching through a tool called SET or Qualtrics. The lecturers and course co-ordinators will consider all feedback.
Your feedback helps to improve the course and its delivery for all students.
Additional feedbeek is welcome anytime during the course, either directly to lecturers or anonymously via class representatives.
Academic Integrity
The University of Auckland will not tolerate cheating, or assisting others to cheat, and views cheating in coursework, tests and examinations as a serious academic offence. The work that a student submits for grading must be the student's own work, reflecting their learning. Where work from other sources is used, it must be properly acknowledged and referenced. A student's assessed work may be reviewed against electronic source material using computerised detection mechanisms. Upon reasonable request, students may be required to provide an electronic version of their work for computerised review.
Class Representatives
Class representatives are students tasked with representing student issues to departments, faculties, and the wider university. If you have a complaint about this course, please contact your class rep who will know how to raise it in the right channels. See your departmental noticeboard for contact details for your class reps.
Copyright
The content and delivery of content in this course are protected by copyright. Material belonging to others may have been used in this course and copied by and solely for the educational purposes of the University under license.
You may copy the course content for the purposes of private study or research, but you may not upload onto any third party site, make a further copy or sell, alter or further reproduce or distribute any part of the course content to another person.
Inclusive Learning
All students are asked to discuss any impairment related requirements privately, face to face and/or in written form with the course coordinator, lecturer or tutor.
Student Disability Services also provides support for students with a wide range of impairments, both visible and invisible, to succeed and excel at the University. For more information and contact details, please visit the Student Disability Services’ website http://disability.auckland.ac.nz
Special Circumstances
If your ability to complete assessed coursework is affected by illness or other personal circumstances outside of your control, contact a member of teaching staff as soon as possible before the assessment is due.
If your personal circumstances significantly affect your performance, or preparation, for an exam or eligible written test, refer to the University’s aegrotat or compassionate consideration page https://www.auckland.ac.nz/en/students/academic-information/exams-and-final-results/during-exams/aegrotat-and-compassionate-consideration.html.
This should be done as soon as possible and no later than seven days after the affected test or exam date.
Learning Continuity
In the event of an unexpected disruption we undertake to maintain the continuity and standard of teaching and learning in all your courses throughout the year. If there are unexpected disruptions the University has contingency plans to ensure that access to your course continues and your assessment is fair, and not compromised. Some adjustments may need to be made in emergencies. You will be kept fully informed by your course co-ordinator, and if disruption occurs you should refer to the University Website for information about how to proceed.
The delivery mode may change depending on COVID restrictions. Any changes will be communicated through Canvas.
Student Charter and Responsibilities
The Student Charter assumes and acknowledges that students are active participants in the learning process and that they have responsibilities to the institution and the international community of scholars. The University expects that students will act at all times in a way that demonstrates respect for the rights of other students and staff so that the learning environment is both safe and productive. For further information visit Student Charter https://www.auckland.ac.nz/en/students/forms-policies-and-guidelines/student-policies-and-guidelines/student-charter.html.
Disclaimer
Elements of this outline may be subject to change. The latest information about the course will be available for enrolled students in Canvas.
In this course you may be asked to submit your coursework assessments digitally. The University reserves the right to conduct scheduled tests and examinations for this course online or through the use of computers or other electronic devices. Where tests or examinations are conducted online remote invigilation arrangements may be used. The final decision on the completion mode for a test or examination, and remote invigilation arrangements where applicable, will be advised to students at least 10 days prior to the scheduled date of the assessment, or in the case of an examination when the examination timetable is published.