MEDSCI 309 : Biophysics of Nerve and Muscle

Medical and Health Sciences

2020 Semester Two (15 POINTS)

Course Prescription

An advanced treatment of the physiology of excitable cells. Topics include: the biophysical basis of membrane potential, the spread of electrical activation and synaptic transmission, structure, excitation, mechanics and energetics of muscle and functional differences among muscle types. The approach is quantitative with particular emphasis on current advances in the field.

Course Overview

The Biophysics of Nerve and Muscle is an enjoyable paper with a strong emphasis on providing a stimulating state-of-the-art understanding of excitable cells. Those that teach in the course are all committed to ensuring every student is fully supported in their learning. At its crux, the course aims to produce autonomous thinkers and competent scientists with enquiring minds. Experiments are carried out on isolated nerve and muscle preparations, and students have the opportunity to make intracellular recordings of membrane and action potentials, along with contractile function in muscle. Students work collaboratively in small groups during the laboratory exercises which are closely linked to the material presented during lectures. Each 3 hour "wet lab" is backed up by a data analysis tutorial the following week with plenty of opportunity for one-on-one tuition. 

Course Requirements

Prerequisite: MEDSCI 205, 206, or for BE(Hons) students, 15 points from MEDSCI 205 and 15 points from courses at Stage II listed in Part II of the Biomedical Engineering specialisation in the BE(Hons) Schedule

Capabilities Developed in this Course

Capability 1: Disciplinary Knowledge and Practice
Capability 2: Critical Thinking
Capability 3: Solution Seeking
Capability 4: Communication and Engagement
Capability 5: Independence and Integrity
Capability 6: Social and Environmental Responsibilities
Graduate Profile: Bachelor of Science

Learning Outcomes

By the end of this course, students will be able to:
  1. Critically appraise nerve and muscle structure and function, and understand the key factors that regulate skeletal and cardiac muscle performance as demonstrated during the practical classes. (Capability 1 and 2)
  2. Critically appraise the determinants of resting and active membrane potential in nerve and muscle cells and understand the physiological factors that contribute to force development. (Capability 1 and 2)
  3. Evaluate the performance of excitable cells by carrying out experiments on isolated nerve and muscle preparations and linking the experimental data with knowledge presented in lectures. (Capability 1 and 2)
  4. Critically analyse the data obtained in practical laboratories and present in a logical manner in written communication assessments. (Capability 1, 2, 3, 4 and 5)
  5. Integrate information and create new ideas by critically reviewing recent scientific literature and applying this knowledge to observations made during the practical exercises. (Capability 1, 2, 4, 5 and 6)
  6. Working safely and effectively in the field and laboratory and gaining confidence in working in a group environment and contributing effectively (Capability 4, 5 and 6)
  7. Develop numeric problem solving skills and apply these skills during practical data analysis exercises. (Capability 1, 2 and 3)


Assessment Type Percentage Classification
Final Exam 60% Individual Examination
Laboratory reports & problems 30% Individual Coursework
Test 1 5% Individual Coursework
Test 2 5% Individual Coursework
Reports Individual Coursework
Assessment Type Learning Outcome Addressed
1 2 3 4 5 6 7
Final Exam
Laboratory reports & problems
Test 1
Test 2

Learning Resources

For each lecture we have provided specific course objectives to help focus your study. We have a recommended text to assist in revision of basic biophysics and physiology. If this text does not work for you, the library holds many more that may better suit. The more detailed knowledge required for the course will be found in specialist literature: books, reviews and original scientific papers. A list of starter references are provided for each lecture or module, but students are expected to read more widely. 

Recommended Text for Medsci 309 is: Principles of Neural Science. By: Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, Steven A. Siegelbaum, A.J. Hudspeth (5th edition, 2012 or earlier) but we highly recommend reading scientific papers presented during the lectures or suggested in the readings. You will have a much better outcome if you expand from what is presented in the Medsci 309 lectures.

Course Contacts

Course Director: Dr Marie-Louise Ward 
Course Coordinator: Dr Raj Selvaratnam

Workload Expectations

This course is a standard 15 point course and students are expected to spend 10 hours per week involved in each 15 point course that they are enrolled in.

For this course, you can expect 2 hours of lectures, a 3 hour lab or tutorial session, 3 hours of reading and thinking about the content and based on previous students feedback, about 10+ hours of work on laboratory assignments and/or test preparation.

Other Information

We have designed the MEDSCI 309 lecture series in specific modules, which allow you to focus on specific learning objectives for that module.

Module A: Membrane and action potentials
Module B: Neuromuscular and synaptic transmission
Module C: Muscle structure and function
Module D: Striated and smooth muscle
Module E: Thermodynamics of contraction 

However, each module provides important information which can be incorporated into your study of the other modules. This enables you to  build a stronger understanding of the biophysics of excitable cells.

Digital Resources

Course materials are made available in a learning and collaboration tool called Canvas which also includes reading lists and lecture recordings (where available).

Please remember that the recording of any class on a personal device requires the permission of the instructor.

From this website: “Students should be aware that the course materials, and content and delivery of lectures in each course, are protected by copyright. Course materials have been copied either under the Education provisions of the Copyright Act 1994 or one of the Copyright licences the University has entered into. Recording of lectures is at the discretion of the lecturer. Lecturers own copyright in the lectures, materials they have created which supplement the course, and their power point presentations.

You must not copy, alter, distribute (for example on a social media site such as Facebook) or sell to any other person any part of these course materials or lectures. Failure to comply with the terms of this warning may expose you to legal action for copyright infringement by the copyright owner, and disciplinary action by the University.”

Lecture slides on CANVAS: it is the policy of the Department of Physiology not to automatically provide lecture powerpoints on Canvas. Lecturers may choose to do so, but this is at their discretion. They will either be put up prior to the lecture or just after the session


Academic Integrity

The University of Auckland will not tolerate cheating, or assisting others to cheat, and views cheating in coursework as a serious academic offence. The work that a student submits for grading must be the student's own work, reflecting their learning. Where work from other sources is used, it must be properly acknowledged and referenced. This requirement also applies to sources on the internet. A student's assessed work may be reviewed against online source material using computerised detection mechanisms.

The University of Auckland will not tolerate cheating, or assisting others to cheat, and views cheating in coursework as a serious academic offence. Further information can be obtained from: (Students - Plagiarism and Cheating section).
If you are under pressure or stressed by deadlines, discuss this with the Course co-ordinators. We are here to help you.

Inclusive Learning

All students are asked to discuss any impairment related requirements privately, face to face and/or in written form with the course coordinator, lecturer or tutor.

Student Disability Services also provides support for students with a wide range of impairments, both visible and invisible, to succeed and excel at the University. For more information and contact details, please visit the Student Disability Services’ website at

Special Circumstances

If your ability to complete assessed coursework is affected by illness or other personal circumstances outside of your control, contact a member of teaching staff as soon as possible before the assessment is due.

If your personal circumstances significantly affect your performance, or preparation, for an exam or eligible written test, refer to the University’s aegrotat or compassionate consideration page:

This should be done as soon as possible and no later than seven days after the affected test or exam date.

Student Feedback

At the end of every semester students will be invited to give feedback on the course and teaching through a tool called SET or Qualtrics. The lecturers and course co-ordinators will consider all feedback and respond with summaries and actions.

Your feedback helps teachers to improve the course and its delivery for future students.

Class Representatives in each class can take feedback to the department and faculty staff-student consultative committees.

Student Charter and Responsibilities

The Student Charter assumes and acknowledges that students are active participants in the learning process and that they have responsibilities to the institution and the international community of scholars. The University expects that students will act at all times in a way that demonstrates respect for the rights of other students and staff so that the learning environment is both safe and productive. For further information visit Student Charter (


Elements of this outline may be subject to change. The latest information about the course will be available for enrolled students in Canvas.

In this course you may be asked to submit your coursework assessments digitally. The University reserves the right to conduct scheduled tests and examinations for this course online or through the use of computers or other electronic devices. Where tests or examinations are conducted online remote invigilation arrangements may be used. The final decision on the completion mode for a test or examination, and remote invigilation arrangements where applicable, will be advised to students at least 10 days prior to the scheduled date of the assessment, or in the case of an examination when the examination timetable is published.