Search Course Outline

Showing 25 course outlines from 4474 matches

3326

STATS 310

: Introduction to Statistical Inference
2024 Semester One (1243)
Estimation, likelihood methods, hypothesis testing, multivariate distributions, linear models.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250 or equivalent
Restriction: STATS 732
3327

STATS 310

: Introduction to Statistical Inference
2023 Semester One (1233)
Estimation, likelihood methods, hypothesis testing, multivariate distributions, linear models.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250 or equivalent
Restriction: STATS 732
3328

STATS 310

: Introduction to Statistical Inference
2022 Semester One (1223)
Estimation, likelihood methods, hypothesis testing, multivariate distributions, linear models.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250 or equivalent
Restriction: STATS 732
3329

STATS 310

: Introduction to Statistical Inference
2021 Semester One (1213)
Estimation, likelihood methods, hypothesis testing, multivariate distributions, linear models.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250 or equivalent
Restriction: STATS 732
3330

STATS 310

: Introduction to Statistical Inference
2020 Semester One (1203)
Estimation, likelihood methods, hypothesis testing, multivariate distributions, linear models.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250 or equivalent
Restriction: STATS 732
3331

STATS 313

: Advanced Topics in Probability
2024 Semester Two (1245)
Characterisations of and relations between different kinds of random objects including random functions, random paths and random trees. Modes of convergence; the Law of Large Numbers and Central Limit Theorem.
Subject: Statistics
Prerequisite: STATS 225
Restriction: STATS 710
3332

STATS 313

: Advanced Topics in Probability
2022 Semester Two (1225)
Characterisations of and relations between different kinds of random objects including random functions, random paths and random trees. Modes of convergence; the Law of Large Numbers and Central Limit Theorem.
Subject: Statistics
Prerequisite: STATS 225
Restriction: STATS 710
3333

STATS 320

: Applied Stochastic Modelling
2025 Semester One (1253)
Construction, analysis and simulation of stochastic models, and optimisation problems associated with them. Poisson process, Markov chains, continuous-time Markov processes. Equilibrium distribution, reaching probabilities and times, transient behaviour. Use of R to simulate simple stochastic processes. Examples drawn from a range of applications including operations research, biology, and finance.
Subject: Statistics
Prerequisite: 15 points from STATS 125, 210, 225 and 15 points from STATS 201, 208, 220, or ENGSCI 314
3334

STATS 320

: Applied Stochastic Modelling
2024 Semester One (1243)
Construction, analysis and simulation of stochastic models, and optimisation problems associated with them. Poisson process, Markov chains, continuous-time Markov processes. Equilibrium distribution, reaching probabilities and times, transient behaviour. Use of R to simulate simple stochastic processes. Examples drawn from a range of applications including operations research, biology, and finance.
Subject: Statistics
Prerequisite: 15 points from STATS 125, 210, 225 and 15 points from STATS 201, 208, 220, or ENGSCI 314
3335

STATS 320

: Applied Stochastic Modelling
2023 Semester One (1233)
Introduction to stochastic modelling, with an emphasis on queues and models used in finance. Behaviour of Poisson processes, queues and continuous time Markov chains will be investigated using theory and simulation.
Subject: Statistics
Prerequisite: 15 points from STATS 125, 210, 225 and 15 points from STATS 201, 208, 220, or ENGSCI 314
3336

STATS 320

: Applied Stochastic Modelling
2022 Semester One (1223)
Introduction to stochastic modelling, with an emphasis on queues and models used in finance. Behaviour of Poisson processes, queues and continuous time Markov chains will be investigated using theory and simulation.
Subject: Statistics
Prerequisite: 15 points from STATS 125, 210, 225 and 15 points from STATS 201, 207, 208, 220, BIOSCI 209
3337

STATS 320

: Applied Stochastic Modelling
2021 Semester One (1213)
Introduction to stochastic modelling, with an emphasis on queues and models used in finance. Behaviour of Poisson processes, queues and continuous time Markov chains will be investigated using theory and simulation.
Subject: Statistics
Prerequisite: 15 points from STATS 125, 210, 225 and 15 points from STATS 201, 207, 208, 220, BIOSCI 209
3338

STATS 320

: Applied Stochastic Modelling
2020 Semester One (1203)
Introduction to stochastic modelling, with an emphasis on queues and models used in finance. Behaviour of Poisson processes, queues and continuous time Markov chains will be investigated using theory and simulation.
Subject: Statistics
Prerequisite: 15 points from STATS 125, 210, 225 and 15 points from STATS 201, 207, 208, 220, BIOSCI 209
3339

STATS 325

: Stochastic Processes
2025 Semester Two (1255)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Subject: Statistics
Prerequisite: B+ or higher in STATS 125 or B or higher in ENGSCI 314 or STATS 210 or 225 or 320, and 15 points from ENGSCI 211, MATHS 208, 250
Restriction: STATS 721
3340

STATS 325

: Stochastic Processes
2024 Semester Two (1245)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Subject: Statistics
Prerequisite: B+ or higher in STATS 125 or B or higher in ENGSCI 314 or STATS 210 or 225 or 320, and 15 points from ENGSCI 211, MATHS 208, 250
Restriction: STATS 721
3341

STATS 325

: Stochastic Processes
2023 Semester Two (1235)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Subject: Statistics
Prerequisite: B+ or higher in STATS 125 or B or higher in ENGSCI 314 or STATS 210 or 225 or 320, and 15 points from ENGSCI 211, MATHS 208, 250
Restriction: STATS 721
3342

STATS 325

: Stochastic Processes
2022 Semester Two (1225)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Subject: Statistics
Prerequisite: B+ or higher in STATS 125 or B or higher in STATS 210 or 225 or 320, and 15 points from ENGSCI 211, MATHS 208, 250
Restriction: STATS 721
3343

STATS 325

: Stochastic Processes
2021 Semester Two (1215)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Subject: Statistics
Prerequisite: B+ or higher in STATS 125 or B or higher in STATS 210 or 225 or 320, and 15 points from ENGSCI 211, MATHS 208, 250
Restriction: STATS 721
3344

STATS 325

: Stochastic Processes
2020 Semester Two (1205)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Subject: Statistics
Prerequisite: 15 points from STATS 125, 210, 320, with at least a B pass, 15 points from MATHS 208, 250, 253
Restriction: STATS 721
3345

STATS 326

: Applied Time Series Analysis
2025 Semester One (1253)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from ECON 211, ENGSCI 314, STATS 201, 208
Restriction: STATS 727
3346

STATS 326

: Applied Time Series Analysis
2024 Semester One (1243)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from ECON 211, ENGSCI 314, STATS 201, 208
Restriction: STATS 727
3347

STATS 326

: Applied Time Series Analysis
2023 Semester One (1233)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from ECON 211, ENGSCI 314, STATS 201, 208
Restriction: STATS 727
3348

STATS 326

: Applied Time Series Analysis
2022 Semester One (1223)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, ECON 211, STATS 201, 207, 208
Restriction: STATS 727
3349

STATS 326

: Applied Time Series Analysis
2021 Semester One (1213)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, ECON 211, STATS 201, 207, 208
Restriction: STATS 727
3350

STATS 326

: Applied Time Series Analysis
2021 Summer School (1210)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, ECON 211, STATS 201, 207, 208
Restriction: STATS 727