Search Course Outline
Showing 25 course outlines from 3703 matches
1826
MATHS 260
: Differential Equations2022 Semester Two (1225)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1827
MATHS 260
: Differential Equations2022 Semester One (1223)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1828
MATHS 260
: Differential Equations2021 Semester Two (1215)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1829
MATHS 260
: Differential Equations2021 Semester One (1213)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1830
MATHS 260
: Differential Equations2020 Semester Two (1205)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1831
MATHS 260
: Differential Equations2020 Semester One (1203)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1832
MATHS 270
: Numerical Computation2024 Semester Two (1245)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110 and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1833
MATHS 270
: Numerical Computation2023 Semester Two (1235)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110 and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1834
MATHS 270
: Numerical Computation2022 Semester Two (1225)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1835
MATHS 270
: Numerical Computation2021 Semester Two (1215)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1836
MATHS 270
: Numerical Computation2021 Semester One (1213)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1837
MATHS 270
: Numerical Computation2020 Semester Two (1205)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1838
MATHS 270
: Numerical Computation2020 Semester One (1203)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1839
MATHS 302
: Perspectives in Mathematics Education2024 Semester Two (1245)
For people interested in thinking about the social, cultural, political, economic, historical, technological and theoretical ideas that influence mathematics education, who want to understand the forces that shaped their own mathematics education, or who are interested in teaching. Students will develop their ability to communicate ideas in essay form. Recommended preparation: At least 45 points from courses in Mathematics or Statistics.
No pre-requisites or restrictions
1840
MATHS 302
: Perspectives in Mathematics Education2023 Semester Two (1235)
For people interested in thinking about the social, cultural, political, economic, historical, technological and theoretical ideas that influence mathematics education, who want to understand the forces that shaped their own mathematics education, or who are interested in teaching. Students will develop their ability to communicate ideas in essay form. Recommended preparation: At least 45 points from courses in Mathematics or Statistics.
No pre-requisites or restrictions
1841
MATHS 302
: Perspectives in Mathematics Education2022 Semester Two (1225)
For people interested in thinking about the social, cultural, political, economic, historical, technological and theoretical ideas that influence mathematics education, who want to understand the forces that shaped their own mathematics education, or who are interested in teaching. Students will develop their ability to communicate ideas in essay form. Recommended preparation: At least 45 points from courses in Mathematics or Statistics.
No pre-requisites or restrictions
1842
MATHS 302
: Perspectives in Mathematics Education2021 Semester Two (1215)
For people interested in thinking about the social, cultural, political, economic, historical, technological and theoretical ideas that influence mathematics education, who want to understand the forces that shaped their own mathematics education, or who are interested in teaching. Students will develop their ability to communicate ideas in essay form. Recommended preparation: At least 45 points from courses in Mathematics or Statistics.
No pre-requisites or restrictions
1843
MATHS 302
: Perspectives in Mathematics Education2020 Semester Two (1205)
For people interested in thinking about the social, cultural, political, economic, historical, technological and theoretical ideas that influence mathematics education, who want to understand the forces that shaped their own mathematics education, or who are interested in teaching. Students will develop their ability to communicate ideas in essay form. Recommended preparation: At least 45 points from courses in Mathematics or Statistics.
No pre-requisites or restrictions
1844
MATHS 315
: Mathematical Logic2024 Semester Two (1245)
Logic addresses the foundations of mathematical reasoning. It models the process of mathematical proof by providing a setting and the rules of deduction. This course builds a basic understanding of first order predicate logic, introduces model theory and demonstrates how models of a first order system relate to mathematical structures. Recommended for high level computer science or mathematical logic.
Prerequisite: B+ or higher in COMPSCI 225 or MATHS 254 or PHIL 222
1845
MATHS 315
: Mathematical Logic2023 Semester Two (1235)
Logic addresses the foundations of mathematical reasoning. It models the process of mathematical proof by providing a setting and the rules of deduction. Builds a basic understanding of first order predicate logic, introduces model theory and demonstrates how models of a first order system relate to mathematical structures. The course is recommended for anyone studying high level computer science or mathematical logic.
Prerequisite: B+ or higher in COMPSCI 225 or MATHS 254 or PHIL 222
1846
MATHS 315
: Mathematical Logic2022 Semester Two (1225)
Logic addresses the foundations of mathematical reasoning. It models the process of mathematical proof by providing a setting and the rules of deduction. Builds a basic understanding of first order predicate logic, introduces model theory and demonstrates how models of a first order system relate to mathematical structures. The course is recommended for anyone studying high level computer science or mathematical logic.
Prerequisite: B+ or higher in COMPSCI 225 or MATHS 254 or 255 or PHIL 222
1847
MATHS 315
: Mathematical Logic2021 Semester Two (1215)
Logic addresses the foundations of mathematical reasoning. It models the process of mathematical proof by providing a setting and the rules of deduction. Builds a basic understanding of first order predicate logic, introduces model theory and demonstrates how models of a first order system relate to mathematical structures. The course is recommended for anyone studying high level computer science or mathematical logic.
Prerequisite: B+ or higher in COMPSCI 225 or MATHS 254 or 255 or PHIL 222
1848
MATHS 315
: Mathematical Logic2020 Semester Two (1205)
Logic addresses the foundations of mathematical reasoning. It models the process of mathematical proof by providing a setting and the rules of deduction. Builds a basic understanding of first order predicate logic, introduces model theory and demonstrates how models of a first order system relate to mathematical structures. The course is recommended for anyone studying high level computer science or mathematical logic.
Prerequisite: B+ or higher in COMPSCI 225 or MATHS 254 or 255 or PHIL 222
1849
MATHS 320
: Algebraic Structures2024 Semester Two (1245)
This is a framework for a unified treatment of many different mathematical structures. It concentrates on the fundamental notions of groups, rings and fields. The abstract descriptions are accompanied by numerous concrete examples. Applications abound: symmetries, geometry, coding theory, cryptography and many more. This course is recommended for those planning graduate study in pure mathematics.
Prerequisite: MATHS 250, 254
1850
MATHS 320
: Algebraic Structures2023 Semester Two (1235)
This is a framework for a unified treatment of many different mathematical structures. It concentrates on the fundamental notions of groups, rings and fields. The abstract descriptions are accompanied by numerous concrete examples. Applications abound: symmetries, geometry, coding theory, cryptography and many more. This course is recommended for those planning graduate study in pure mathematics.
Prerequisite: MATHS 250, 254
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149