Search Course Outline
Showing 25 course outlines from 3703 matches
2101
PHYSICS 356
: Particle Physics and Astrophysics2022 Semester Two (1225)
Particle physics topics covered will include relativistic dynamics and application to fundamental particle interactions, the properties of strong, weak and electromagnetic interactions and the particle zoo. Astrophysics topics will include some of the following: the Big Bang, "concordance cosmology", redshifts, theories of dark matter, extra-solar planets, stellar evolution, supernovae, gravitational wave sources, nuclear astrophysics and the origin of the elements.
Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 203, 251 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Concurrent enrolment in PHYSICS 390 is recommended
Restriction: PHYSICS 355
Restriction: PHYSICS 355
2102
PHYSICS 356
: Particle Physics and Astrophysics2021 Semester Two (1215)
Particle physics topics covered will include relativistic dynamics and application to fundamental particle interactions, the properties of strong, weak and electromagnetic interactions and the particle zoo. Astrophysics topics will include some of the following: the Big Bang, "concordance cosmology", redshifts, theories of dark matter, extra-solar planets, stellar evolution, supernovae, gravitational wave sources, nuclear astrophysics and the origin of the elements.
Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 203, 251 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Concurrent enrolment in PHYSICS 390 is recommended
Restriction: PHYSICS 355
Restriction: PHYSICS 355
2103
PHYSICS 356
: Particle Physics and Astrophysics2020 Semester Two (1205)
Particle physics topics covered will include relativistic dynamics and application to fundamental particle interactions, the properties of strong, weak and electromagnetic interactions and the particle zoo. Astrophysics topics will include some of the following: the Big Bang, "concordance cosmology", redshifts, theories of dark matter, extra-solar planets, stellar evolution, supernovae, gravitational wave sources, nuclear astrophysics and the origin of the elements.
Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 203, 251 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Concurrent enrolment in PHYSICS 390 is recommended
Restriction: PHYSICS 355
Restriction: PHYSICS 355
2104
PHYSICS 390
: Experimental Physics2024 Semester Two (1245)
Covers advanced experimental techniques, giving students choices between a wide range of classic physics experiments and open-ended investigations of physical phenomena.
Prerequisite: 15 points from PHYSICS 201, 202, 203, 231, 240, 244, 251, 261
2105
PHYSICS 390
: Experimental Physics2024 Semester One (1243)
Covers advanced experimental techniques, giving students choices between a wide range of classic physics experiments and open-ended investigations of physical phenomena.
Prerequisite: 15 points from PHYSICS 201, 202, 203, 231, 240, 244, 251, 261
2106
PHYSICS 390
: Experimental Physics2023 Semester Two (1235)
Covers advanced experimental techniques, giving students choices between a wide range of classic physics experiments and open-ended investigations of physical phenomena.
Prerequisite: 15 points from PHYSICS 201, 202, 203, 231, 240, 244, 251, 261
2107
PHYSICS 390
: Experimental Physics2023 Semester One (1233)
Covers advanced experimental techniques, giving students choices between a wide range of classic physics experiments and open-ended investigations of physical phenomena.
Prerequisite: 15 points from PHYSICS 201, 202, 203, 231, 240, 244, 251, 261
2108
PHYSICS 390
: Experimental Physics2022 Semester Two (1225)
Covers advanced experimental techniques, giving students choices between a wide range of classic physics experiments and open-ended investigations of physical phenomena.
Prerequisite: 15 points from PHYSICS 201, 202, 203, 231, 240, 244, 251, 261
2109
PHYSICS 390
: Experimental Physics2022 Semester One (1223)
Covers advanced experimental techniques, giving students choices between a wide range of classic physics experiments and open-ended investigations of physical phenomena.
Prerequisite: 15 points from PHYSICS 201, 202, 203, 231, 240, 244, 251, 261
2110
PHYSICS 390
: Experimental Physics2021 Semester Two (1215)
Covers advanced experimental techniques, giving students choices between a wide range of classic physics experiments and open-ended investigations of physical phenomena.
Prerequisite: 15 points from PHYSICS 201, 202, 203, 231, 240, 244, 251, 261
2111
PHYSICS 399
: Capstone: Physics2024 Semester Two (1245)
Students will undertake experimental, observational, computational and numerical investigations of key physical phenomena, working individually and in groups, producing both written and oral reports.
Prerequisite: 30 points from PHYSICS 201-261 and 30 points from PHYSICS 309-356
2112
PHYSICS 399
: Capstone: Physics2024 Semester One (1243)
Students will undertake experimental, observational, computational and numerical investigations of key physical phenomena, working individually and in groups, producing both written and oral reports.
Prerequisite: 30 points from PHYSICS 201-261 and 30 points from PHYSICS 309-356
2113
PHYSICS 399
: Capstone: Physics2023 Semester Two (1235)
Students will undertake experimental, observational, computational and numerical investigations of key physical phenomena, working individually and in groups, producing both written and oral reports.
Prerequisite: 30 points from PHYSICS 201-261 and 30 points from PHYSICS 309-356
2114
PHYSICS 399
: Capstone: Physics2023 Semester One (1233)
Students will undertake experimental, observational, computational and numerical investigations of key physical phenomena, working individually and in groups, producing both written and oral reports.
Prerequisite: 30 points from PHYSICS 201-261 and 30 points from PHYSICS 309-356
2115
PHYSICS 399
: Capstone: Physics2022 Semester Two (1225)
Students will undertake experimental, observational, computational and numerical investigations of key physical phenomena, working individually and in groups, producing both written and oral reports.
Prerequisite: 30 points from PHYSICS 201, 202, 203, 231, 240, 244, 251, 261
2116
PHYSICS 624
: Mechanics and Electrodynamics2024 Semester One (1243)
Advanced topics in classical mechanics and electromagnetism, including variational and least action principles in mechanics, the physical basis of magnetism, and the four-vector treatment of special relativity and electromagnetism. Advanced Laboratory work is included in relevant topics.
Prerequisite: Departmental approval
Restriction: PHYSICS 331
Restriction: PHYSICS 331
2117
PHYSICS 624
: Mechanics and Electrodynamics2023 Semester One (1233)
Advanced topics in classical mechanics and electromagnetism, including variational and least action principles in mechanics, the physical basis of magnetism, and the four-vector treatment of special relativity and electromagnetism. Advanced Laboratory work is included in relevant topics.
Prerequisite: Departmental approval
Restriction: PHYSICS 331
Restriction: PHYSICS 331
2118
PHYSICS 624
: Mechanics and Electrodynamics2022 Semester One (1223)
Advanced topics in classical mechanics and electromagnetism, including variational and least action principles in mechanics, the physical basis of magnetism, and the four-vector treatment of special relativity and electromagnetism. Advanced Laboratory work is included in relevant topics.
Prerequisite: Departmental approval
Restriction: PHYSICS 331
Restriction: PHYSICS 331
2119
PHYSICS 624
: Mechanics and Electrodynamics2021 Semester One (1213)
Advanced topics in classical mechanics and electromagnetism, including variational and least action principles in mechanics, the physical basis of magnetism, and the four-vector treatment of special relativity and electromagnetism. Advanced Laboratory work is included in relevant topics.
Prerequisite: Departmental approval
Restriction: PHYSICS 331
Restriction: PHYSICS 331
2120
PHYSICS 625
: Lasers and Electromagnetic Waves2024 Semester Two (1245)
Surveys the basic principles of lasers and explains how the behaviour and propagation of light can be understood in terms of electromagnetic waves described by Maxwell’s equations. The theory and applications of several key optical components will be described, including lasers and resonators. Advanced Laboratory work is included in relevant topics.
Prerequisite: Departmental approval
Restriction: PHYSICS 333
Restriction: PHYSICS 333
2121
PHYSICS 625
: Lasers and Electromagnetic Waves2023 Semester Two (1235)
Surveys the basic principles of lasers and explains how the behaviour and propagation of light can be understood in terms of electromagnetic waves described by Maxwell’s equations. The theory and applications of several key optical components will be described, including lasers and resonators. Advanced Laboratory work is included in relevant topics.
Prerequisite: Departmental approval
Restriction: PHYSICS 333
Restriction: PHYSICS 333
2122
PHYSICS 625
: Lasers and Electromagnetic Waves2022 Semester Two (1225)
Surveys the basic principles of lasers and explains how the behaviour and propagation of light can be understood in terms of electromagnetic waves described by Maxwell’s equations. The theory and applications of several key optical components will be described, including lasers and resonators. Advanced Laboratory work is included in relevant topics.
Prerequisite: Departmental approval
Restriction: PHYSICS 333
Restriction: PHYSICS 333
2123
PHYSICS 625
: Lasers and Electromagnetic Waves2021 Semester Two (1215)
Surveys the basic principles of lasers and explains how the behaviour and propagation of light can be understood in terms of electromagnetic waves described by Maxwell’s equations. The theory and applications of several key optical components will be described, including lasers and resonators. Advanced Laboratory work is included in relevant topics.
Prerequisite: Departmental approval
Restriction: PHYSICS 333
Restriction: PHYSICS 333
2124
PHYSICS 626
: Quantum Physics2024 Semester Two (1245)
Develops non-relativistic quantum mechanics with applications to the physics of atoms and molecules and to quantum information theory. Topics include the Stern-Gerlach effect, spin-orbit coupling, Bell’s inequalities, interactions of atoms with light, and the interactions of identical particles. Advanced Laboratory work is included in relevant topics.
Prerequisite: Departmental approval
Restriction: PHYSICS 335
Restriction: PHYSICS 335
2125
PHYSICS 626
: Quantum Physics2023 Semester Two (1235)
Develops non-relativistic quantum mechanics with applications to the physics of atoms and molecules and to quantum information theory. Topics include the Stern-Gerlach effect, spin-orbit coupling, Bell’s inequalities, interactions of atoms with light, and the interactions of identical particles. Advanced Laboratory work is included in relevant topics.
Prerequisite: Departmental approval
Restriction: PHYSICS 335
Restriction: PHYSICS 335
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149