Search Course Outline
5 course outlines found
1
PHYSICS 746
: Relativistic Quantum Mechanics and Field Theory2025 Semester Two (1255)
Examines quantum field theory. Covers the relativistic generalisations of the Schrödinger equation and many-particle quantum mechanics, quantum electrodynamics is explored using Feynman diagram techniques. Extensions of scalar field theory to include path integrals, statistical field theory, broken symmetry, renormalisation and the renormalisation group.
Restriction: PHYSICS 706, 755
2
PHYSICS 746
: Relativistic Quantum Mechanics and Field Theory2024 Semester Two (1245)
Examines quantum field theory. Covers the relativistic generalisations of the Schrödinger equation and many-particle quantum mechanics, quantum electrodynamics is explored using Feynman diagram techniques. Extensions of scalar field theory to include path integrals, statistical field theory, broken symmetry, renormalisation and the renormalisation group.
Restriction: PHYSICS 706, 755
3
PHYSICS 746
: Relativistic Quantum Mechanics and Field Theory2022 Semester Two (1225)
Examines quantum field theory. Covers the relativistic generalisations of the Schrödinger equation and many-particle quantum mechanics, quantum electrodynamics is explored using Feynman diagram techniques. Extensions of scalar field theory to include path integrals, statistical field theory, broken symmetry, renormalisation and the renormalisation group.
Restriction: PHYSICS 706, 755
4
PHYSICS 746
: Relativistic Quantum Mechanics and Field Theory2021 Semester Two (1215)
Examines quantum field theory. Covers the relativistic generalisations of the Schrödinger equation and many-particle quantum mechanics, quantum electrodynamics is explored using Feynman diagram techniques. Extensions of scalar field theory to include path integrals, statistical field theory, broken symmetry, renormalisation and the renormalisation group.
Restriction: PHYSICS 706, 755
5
PHYSICS 746
: Relativistic Quantum Mechanics and Field Theory2020 Semester Two (1205)
Examines quantum field theory. Covers the relativistic generalisations of the Schrödinger equation and many-particle quantum mechanics, quantum electrodynamics is explored using Feynman diagram techniques. Extensions of scalar field theory to include path integrals, statistical field theory, broken symmetry, renormalisation and the renormalisation group.
Restriction: PHYSICS 706, 755