Search Course Outline
Showing 25 course outlines from 2713 matches
676
MEDSCI 202
: Microbiology and Immunology2020 Semester One (1203)
An introduction to the nature and roles of bacteria, viruses, fungi and parasites as the causative agents of human diseases. Topics include: the defence mechanisms of the body, the immune system including autoimmunity and allergy, control of disease by antimicrobials, sterilisation, disinfection and infection control practice.
Prerequisite: BIOSCI 107, MEDSCI 142
Restriction: OPTOM 241, PHARMACY 203
Restriction: OPTOM 241, PHARMACY 203
677
MEDSCI 203
: Mechanisms of Disease2025 Semester One (1253)
Outlines the basic mechanisms, operating at the molecular, cellular and tissue levels, by which human disease develops. These include genetic factors, cell injury, inflammation, repair, circulatory disturbances, and neoplastic change. These mechanisms are illustrated by descriptions of the pathogenesis of specific diseases that are relevant to the New Zealand situation, or are the focus of current biomedical research.
Prerequisite: BIOSCI 107, MEDSCI 142
678
MEDSCI 203
: Mechanisms of Disease2024 Semester One (1243)
Outlines the basic mechanisms, operating at the molecular, cellular and tissue levels, by which human disease develops. These include genetic factors, cell injury, inflammation, repair, circulatory disturbances, and neoplastic change. These mechanisms are illustrated by descriptions of the pathogenesis of specific diseases that are relevant to the New Zealand situation, or are the focus of current biomedical research.
Prerequisite: BIOSCI 107, MEDSCI 142
679
MEDSCI 203
: Mechanisms of Disease2023 Semester One (1233)
Outlines the basic mechanisms, operating at the molecular, cellular and tissue levels, by which human disease develops. These include genetic factors, cell injury, inflammation, repair, circulatory disturbances, and neoplastic change. These mechanisms are illustrated by descriptions of the pathogenesis of specific diseases that are relevant to the New Zealand situation, or are the focus of current biomedical research.
Prerequisite: BIOSCI 107, MEDSCI 142
680
MEDSCI 203
: Mechanisms of Disease2022 Semester One (1223)
Outlines the basic mechanisms, operating at the molecular, cellular and tissue levels, by which human disease develops. These include genetic factors, cell injury, inflammation, repair, circulatory disturbances, and neoplastic change. These mechanisms are illustrated by descriptions of the pathogenesis of specific diseases that are relevant to the New Zealand situation, or are the focus of current biomedical research.
Prerequisite: BIOSCI 107, MEDSCI 142
681
MEDSCI 203
: Mechanisms of Disease2021 Semester One (1213)
Outlines the basic mechanisms, operating at the molecular, cellular and tissue levels, by which human disease develops. These include genetic factors, cell injury, inflammation, repair, circulatory disturbances, and neoplastic change. These mechanisms are illustrated by descriptions of the pathogenesis of specific diseases that are relevant to the New Zealand situation, or are the focus of current biomedical research.
Prerequisite: BIOSCI 107, MEDSCI 142
682
MEDSCI 204
: Pharmacology and Toxicology2025 Semester Two (1255)
A solid grounding in the principles underlying pharmacology and toxicology, including the nature of drug targets, their interaction and response (pharmacodynamics), the fate of drugs within the body (pharmacokinetics), toxicity classification and testing, poisons and antidotes, adverse drug reactions, selective toxicity, drug discovery and development. Selected drug examples will be studied to illustrate key principles of clinical pharmacology.
Prerequisite: CHEM 110, MEDSCI 142, and 15 points from BIOSCI 106 or 107
683
MEDSCI 204
: Pharmacology and Toxicology2024 Semester Two (1245)
A solid grounding in the principles underlying pharmacology and toxicology, including the nature of drug targets, their interaction and response (pharmacodynamics), the fate of drugs within the body (pharmacokinetics), toxicity classification and testing, poisons and antidotes, adverse drug reactions, selective toxicity, drug discovery and development. Selected drug examples will be studied to illustrate key principles of clinical pharmacology.
Prerequisite: CHEM 110, MEDSCI 142, and 15 points from BIOSCI 106 or 107
684
MEDSCI 204
: Pharmacology and Toxicology2023 Semester Two (1235)
A solid grounding in the principles underlying pharmacology and toxicology, including the nature of drug targets, their interaction and response (pharmacodynamics), the fate of drugs within the body (pharmacokinetics), toxicity classification and testing, poisons and antidotes, adverse drug reactions, selective toxicity, drug discovery and development. Selected drug examples will be studied to illustrate key principles of clinical pharmacology.
Prerequisite: CHEM 110, MEDSCI 142, and 15 points from BIOSCI 106 or 107
685
MEDSCI 204
: Pharmacology and Toxicology2022 Semester Two (1225)
A solid grounding in the principles underlying pharmacology and toxicology, including the nature of drug targets, their interaction and response (pharmacodynamics), the fate of drugs within the body (pharmacokinetics), toxicity classification and testing, poisons and antidotes, adverse drug reactions, selective toxicity, drug discovery and development. Selected drug examples will be studied to illustrate key principles of clinical pharmacology.
Prerequisite: CHEM 110, MEDSCI 142, and 15 points from BIOSCI 106 or 107
686
MEDSCI 204
: Pharmacology and Toxicology2021 Semester Two (1215)
A solid grounding in the principles underlying pharmacology and toxicology, including the nature of drug targets, their interaction and response (pharmacodynamics), the fate of drugs within the body (pharmacokinetics), toxicity classification and testing, poisons and antidotes, adverse drug reactions, selective toxicity, drug discovery and development. Selected drug examples will be studied to illustrate key principles of clinical pharmacology.
Prerequisite: CHEM 110, MEDSCI 142, and 15 points from BIOSCI 106 or 107
687
MEDSCI 204
: Pharmacology and Toxicology2020 Semester Two (1205)
A solid grounding in the principles underlying pharmacology and toxicology, including the nature of drug targets, their interaction and response (pharmacodynamics), the fate of drugs within the body (pharmacokinetics), toxicity classification and testing, poisons and antidotes, adverse drug reactions, selective toxicity, drug discovery and development. Selected drug examples will be studied to illustrate key principles of clinical pharmacology.
Prerequisite: CHEM 110, MEDSCI 142, and 15 points from BIOSCI 106 or 107
688
MEDSCI 205
: The Physiology of Human Organ Systems2025 Semester One (1253)
An integrative approach is used to study fundamental physiological processes which enable the body to overcome the challenge of life. Drawing on examples of normal and abnormal function, the course examines the interaction of vital physiological processes, from cellular control mechanisms to multiple organ systems. Topics include: control of fluid and electrolytes, cardiovascular control, energy use, and the delivery of oxygen and metabolites.
Prerequisite: BIOSCI 107, MEDSCI 142
Restriction: PHARMACY 205
Restriction: PHARMACY 205
689
MEDSCI 205
: The Physiology of Human Organ Systems2024 Semester One (1243)
An integrative approach is used to study fundamental physiological processes which enable the body to overcome the challenge of life. Drawing on examples of normal and abnormal function, the course examines the interaction of vital physiological processes, from cellular control mechanisms to multiple organ systems. Topics include: control of fluid and electrolytes, cardiovascular control, energy use, and the delivery of oxygen and metabolites.
Prerequisite: BIOSCI 107, MEDSCI 142
Restriction: PHARMACY 205
Restriction: PHARMACY 205
690
MEDSCI 205
: The Physiology of Human Organ Systems2022 Semester One (1223)
An integrative approach is used to study fundamental physiological processes which enable the body to overcome the challenge of life. Drawing on examples of normal and abnormal function, the course examines the interaction of vital physiological processes, from cellular control mechanisms to multiple organ systems. Topics include: control of fluid and electrolytes, cardiovascular control, energy use, and the delivery of oxygen and metabolites.
Prerequisite: BIOSCI 107, MEDSCI 142
Restriction: PHARMACY 205
Restriction: PHARMACY 205
691
MEDSCI 205
: The Physiology of Human Organ Systems2021 Semester One (1213)
An integrative approach is used to study fundamental physiological processes which enable the body to overcome the challenge of life. Drawing on examples of normal and abnormal function, the course examines the interaction of vital physiological processes, from cellular control mechanisms to multiple organ systems. Topics include: control of fluid and electrolytes, cardiovascular control, energy use, and the delivery of oxygen and metabolites.
Prerequisite: BIOSCI 107, MEDSCI 142
Restriction: PHARMACY 205
Restriction: PHARMACY 205
692
MEDSCI 205
: The Physiology of Human Organ Systems2020 Semester One (1203)
An integrative approach is used to study fundamental physiological processes which enable the body to overcome the challenge of life. Drawing on examples of normal and abnormal function, the course examines the interaction of vital physiological processes, from cellular control mechanisms to multiple organ systems. Topics include: control of fluid and electrolytes, cardiovascular control, energy use, and the delivery of oxygen and metabolites.
Prerequisite: BIOSCI 107, MEDSCI 142
Restriction: PHARMACY 205
Restriction: PHARMACY 205
693
MEDSCI 206
: Principles of Neuroscience2025 Semester Two (1255)
The impact of neuroscience revolution on our understanding of human physiology and biomedical research is reviewed. Topics include: mechanisms of neurotransmission, learning, memory, sensory perception (vision, hearing, touch and smell) and application of gene therapy for treating neurological diseases. Special emphasis is placed on the integration and control of physiological function by the nervous system. Examples include control of movement and coordination, regulation of reproduction, blood pressure, breathing, appetite, body weight and sexuality. Developmental neuroscience is also considered. Laboratory exercises provide insight into neural structure and function and include application of neuroimaging technologies.
Prerequisite: BIOSCI 107, MEDSCI 142
694
MEDSCI 206
: Principles of Neuroscience2024 Semester Two (1245)
The impact of neuroscience revolution on our understanding of human physiology and biomedical research is reviewed. Topics include: mechanisms of neurotransmission, learning, memory, sensory perception (vision, hearing, touch and smell) and application of gene therapy for treating neurological diseases. Special emphasis is placed on the integration and control of physiological function by the nervous system. Examples include control of movement and coordination, regulation of reproduction, blood pressure, breathing, appetite, body weight and sexuality. Developmental neuroscience is also considered. Laboratory exercises provide insight into neural structure and function and include application of neuroimaging technologies.
Prerequisite: BIOSCI 107, MEDSCI 142
695
MEDSCI 206
: Principles of Neuroscience2023 Semester Two (1235)
The impact of neuroscience revolution on our understanding of human physiology and biomedical research is reviewed. Topics include: mechanisms of neurotransmission, learning, memory, sensory perception (vision, hearing, touch and smell) and application of gene therapy for treating neurological diseases. Special emphasis is placed on the integration and control of physiological function by the nervous system. Examples include control of movement and coordination, regulation of reproduction, blood pressure, breathing, appetite, body weight and sexuality. Developmental neuroscience is also considered. Laboratory exercises provide insight into neural structure and function and include application of neuroimaging technologies.
Prerequisite: BIOSCI 107, MEDSCI 142
696
MEDSCI 206
: Principles of Neuroscience2022 Semester Two (1225)
The impact of neuroscience revolution on our understanding of human physiology and biomedical research is reviewed. Topics include: mechanisms of neurotransmission, learning, memory, sensory perception (vision, hearing, touch and smell) and application of gene therapy for treating neurological diseases. Special emphasis is placed on the integration and control of physiological function by the nervous system. Examples include control of movement and coordination, regulation of reproduction, blood pressure, breathing, appetite, body weight and sexuality. Developmental neuroscience is also considered. Laboratory exercises provide insight into neural structure and function and include application of neuroimaging technologies.
Prerequisite: BIOSCI 107, MEDSCI 142
697
MEDSCI 206
: Principles of Neuroscience2021 Semester Two (1215)
The impact of neuroscience revolution on our understanding of human physiology and biomedical research is reviewed. Topics include: mechanisms of neurotransmission, learning, memory, sensory perception (vision, hearing, touch and smell) and application of gene therapy for treating neurological diseases. Special emphasis is placed on the integration and control of physiological function by the nervous system. Examples include control of movement and coordination, regulation of reproduction, blood pressure, breathing, appetite, body weight and sexuality. Developmental neuroscience is also considered. Laboratory exercises provide insight into neural structure and function and include application of neuroimaging technologies.
Prerequisite: BIOSCI 107, MEDSCI 142
698
MEDSCI 206
: Principles of Neuroscience2020 Semester Two (1205)
The impact of neuroscience revolution on our understanding of human physiology and biomedical research is reviewed. Topics include: mechanisms of neurotransmission, learning, memory, sensory perception (vision, hearing, touch and smell) and application of gene therapy for treating neurological diseases. Special emphasis is placed on the integration and control of physiological function by the nervous system. Examples include control of movement and coordination, regulation of reproduction, blood pressure, breathing, appetite, body weight and sexuality. Developmental neuroscience is also considered. Laboratory exercises provide insight into neural structure and function and include application of neuroimaging technologies.
Prerequisite: BIOSCI 107, MEDSCI 142
699
MEDSCI 300
: Analytical Anatomy and Visualisation2024 Semester Two (1245)
Examines the analysis, description and quantification of anatomical structures, including visualisation methodologies and the challenges of imaging subcellular to whole organ anatomy. Emphasis is placed on emerging applications and technology, including computational anatomy, surgical planning and research applications. Appropriate uses of human tissue, modern imaging technologies, tissue preparation, imaging artefacts, and novel visualisation techniques will be explored.
Prerequisite: MEDSCI 201
700
MEDSCI 300
: Analytical Anatomy and Visualisation2023 Semester Two (1235)
Examines the analysis, description and quantification of anatomical structures, including visualisation methodologies and the challenges of imaging subcellular to whole organ anatomy. Emphasis is placed on emerging applications and technology, including computational anatomy, surgical planning and research applications. Appropriate uses of human tissue, modern imaging technologies, tissue preparation, imaging artefacts, and novel visualisation techniques will be explored.
Prerequisite: MEDSCI 201
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109