Search Course Outline

Showing 25 course outlines from 4499 matches

3326

STATS 240

: Design and Structured Data
2025 Semester Two (1255)
An introduction to research study design and the analysis of structured data. Blocking, randomisation, and replication in designed experiments. Clusters, stratification, and weighting in samples. Other examples of structured data.
Subject: Statistics
Prerequisite: STATS 101 or 108
Restriction: STATS 340
3327

STATS 240

: Design and Structured Data
2024 Semester Two (1245)
An introduction to research study design and the analysis of structured data. Blocking, randomisation, and replication in designed experiments. Clusters, stratification, and weighting in samples. Other examples of structured data.
Subject: Statistics
Prerequisite: STATS 101 or 108
Restriction: STATS 340
3328

STATS 240

: Design and Structured Data
2023 Semester Two (1235)
An introduction to research study design and the analysis of structured data. Blocking, randomisation, and replication in designed experiments. Clusters, stratification, and weighting in samples. Other examples of structured data.
Subject: Statistics
Prerequisite: STATS 101 or 108
Restriction: STATS 340
3329

STATS 240

: Design and Structured Data
2022 Semester Two (1225)
An introduction to research study design and the analysis of structured data. Blocking, randomisation, and replication in designed experiments. Clusters, stratification, and weighting in samples. Other examples of structured data.
Subject: Statistics
Prerequisite: STATS 101 or 108
Restriction: STATS 340
3330

STATS 240

: Design and Structured Data
2021 Semester Two (1215)
An introduction to research study design and the analysis of structured data. Blocking, randomisation, and replication in designed experiments. Clusters, stratification, and weighting in samples. Other examples of structured data.
Subject: Statistics
Prerequisite: STATS 101 or 108
Restriction: STATS 340
3331

STATS 240

: Design and Structured Data
2020 Semester Two (1205)
An introduction to research study design and the analysis of structured data. Blocking, randomisation, and replication in designed experiments. Clusters, stratification, and weighting in samples. Other examples of structured data.
Subject: Statistics
Prerequisite: STATS 101 or 108
Restriction: STATS 340
3332

STATS 255

: Optimisation and Data-driven Decision Making
2025 Semester One (1253)
Explores methods for using data to assist in decision making in business and industrial applications. Software packages will be used to solve practical problems. Topics such as linear programming, transportation and assignment models, network algorithms, queues, Markov chains, inventory models, simulation, analytics and visualisation will be considered.
Subject: Statistics
Prerequisite: ENGSCI 211 or STATS 201 or 208, or a B+ or higher in either MATHS 108 or 120 or 130 or 162 or 199 or STATS 101 or 108, or a concurrent enrolment in either ENGSCI 211 or STATS 201 or 208
Restriction: ENGSCI 255
3333

STATS 255

: Optimisation and Data-driven Decision Making
2024 Semester One (1243)
Explores methods for using data to assist in decision making in business and industrial applications. Software packages will be used to solve practical problems. Topics such as linear programming, transportation and assignment models, network algorithms, queues, Markov chains, inventory models, simulation, analytics and visualisation will be considered.
Subject: Statistics
Prerequisite: ENGSCI 211 or STATS 201 or 208, or a B+ or higher in either MATHS 108 or 120 or 130 or 162 or 199 or STATS 101 or 108, or a concurrent enrolment in either ENGSCI 211 or STATS 201 or 208
Restriction: ENGSCI 255
3334

STATS 255

: Optimisation and Data-driven Decision Making
2023 Semester One (1233)
Explores methods for using data to assist in decision making in business and industrial applications. Software packages will be used to solve practical problems. Topics such as linear programming, transportation and assignment models, network algorithms, queues, Markov chains, inventory models, simulation, analytics and visualisation will be considered.
Subject: Statistics
Prerequisite: ENGSCI 211 or STATS 201 or 208, or a B+ or higher in either MATHS 108 or 120 or 130 or 162 or 199 or STATS 101 or 108, or a concurrent enrolment in either ENGSCI 211 or STATS 201 or 208
Restriction: ENGSCI 255
3335

STATS 255

: Optimisation and Data-driven Decision Making
2022 Semester One (1223)
Explores methods for using data to assist in decision making in business and industrial applications. Software packages will be used to solve practical problems. Topics such as linear programming, transportation and assignment models, network algorithms, queues, Markov chains, inventory models, simulation, analytics and visualisation will be considered.
Subject: Statistics
Prerequisite: ENGSCI 211 or STATS 201 or 208, or a B+ or higher in either MATHS 108 or 120 or 130 or 150 or 153 or 162 or 199 or STATS 101 or 108, or a concurrent enrolment in either ENGSCI 211 or STATS 201 or 208
Restriction: ENGSCI 255
3336

STATS 255

: Optimisation and Data-driven Decision Making
2021 Semester One (1213)
Explores methods for using data to assist in decision making in business and industrial applications. Software packages will be used to solve practical problems. Topics such as linear programming, transportation and assignment models, network algorithms, queues, Markov chains, inventory models, simulation, analytics and visualisation will be considered.
Subject: Statistics
Prerequisite: ENGSCI 211 or STATS 201 or 208, or a B+ or higher in either MATHS 120 or 130 or 150 or 153 or STATS 101 or 108, or a concurrent enrolment in either ENGSCI 211 or STATS 201 or 208
Restriction: ENGSCI 255
3337

STATS 255

: Optimisation and Data-driven Decision Making
2020 Semester Two (1205)
Explores methods for using data to assist in decision making in business and industrial applications. Software packages will be used to solve practical problems. Topics such as linear programming, transportation and assignment models, network algorithms, queues, Markov chains, inventory models, simulation, analytics and visualisation will be considered.
Subject: Statistics
Prerequisite: ENGSCI 211 or STATS 201 or 208, or a B+ or higher in either MATHS 120 or 130 or 150 or 153 or STATS 101 or 108, or a concurrent enrolment in either ENGSCI 211 or STATS 201 or 208
Restriction: ENGSCI 255
3338

STATS 255

: Optimisation and Data-driven Decision Making
2020 Semester One (1203)
Explores methods for using data to assist in decision making in business and industrial applications. Software packages will be used to solve practical problems. Topics such as linear programming, transportation and assignment models, network algorithms, queues, Markov chains, inventory models, simulation, analytics and visualisation will be considered.
Subject: Statistics
Prerequisite: ENGSCI 211 or STATS 201 or 208, or a B+ or higher in either MATHS 120 or 130 or 150 or 153 or STATS 101 or 108, or a concurrent enrolment in either ENGSCI 211 or STATS 201 or 208
Restriction: ENGSCI 255
3339

STATS 301

: Statistical Programming and Modelling using SAS
2021 Semester Two (1215)
Introduction to the SAS statistical software with emphasis on using SAS as a programming language for purposes of database manipulation, simulation, statistical modelling and other computer-intensive methods.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
Restriction: STATS 785
3340

STATS 301

: Statistical Programming and Modelling using SAS
2021 Summer School (1210)
Introduction to the SAS statistical software with emphasis on using SAS as a programming language for purposes of database manipulation, simulation, statistical modelling and other computer-intensive methods.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
Restriction: STATS 785
3341

STATS 301

: Statistical Programming and Modelling using SAS
2020 Semester Two (1205)
Introduction to the SAS statistical software with emphasis on using SAS as a programming language for purposes of database manipulation, simulation, statistical modelling and other computer-intensive methods.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
Restriction: STATS 785
3342

STATS 301

: Statistical Programming and Modelling using SAS
2020 Summer School (1200)
Introduction to the SAS statistical software with emphasis on using SAS as a programming language for purposes of database manipulation, simulation, statistical modelling and other computer-intensive methods.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
Restriction: STATS 785
3343

STATS 302

: Applied Multivariate Analysis
2025 Semester One (1253)
Covers the exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
Restriction: STATS 767
3344

STATS 302

: Applied Multivariate Analysis
2024 Semester One (1243)
Covers the exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
Restriction: STATS 767
3345

STATS 302

: Applied Multivariate Analysis
2023 Semester One (1233)
Covers the exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
Restriction: STATS 767
3346

STATS 302

: Applied Multivariate Analysis
2022 Semester One (1223)
Covers the exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
Restriction: STATS 767
3347

STATS 302

: Applied Multivariate Analysis
2021 Semester One (1213)
Covers the exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
Restriction: STATS 767
3348

STATS 302

: Applied Multivariate Analysis
2020 Semester One (1203)
Covers the exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
Restriction: STATS 767
3349

STATS 310

: Introduction to Statistical Inference
2025 Semester One (1253)
Estimation, likelihood methods, hypothesis testing, multivariate distributions, linear models.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250 or equivalent
Restriction: STATS 732
3350

STATS 310

: Introduction to Statistical Inference
2024 Semester One (1243)
Estimation, likelihood methods, hypothesis testing, multivariate distributions, linear models.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250 or equivalent
Restriction: STATS 732