Search Course Outline

Showing 25 course outlines from 4482 matches

3351

STATS 326

: Applied Time Series Analysis
2022 Semester One (1223)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, ECON 211, STATS 201, 207, 208
Restriction: STATS 727
3352

STATS 326

: Applied Time Series Analysis
2021 Semester One (1213)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, ECON 211, STATS 201, 207, 208
Restriction: STATS 727
3353

STATS 326

: Applied Time Series Analysis
2021 Summer School (1210)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, ECON 211, STATS 201, 207, 208
Restriction: STATS 727
3354

STATS 326

: Applied Time Series Analysis
2020 Semester One (1203)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 208, BIOSCI 209, ECON 221
Restriction: STATS 727
3355

STATS 326

: Applied Time Series Analysis
2020 Summer School (1200)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 208, BIOSCI 209, ECON 221
Restriction: STATS 727
3356

STATS 330

: Statistical Modelling
2025 Semester Two (1255)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3357

STATS 330

: Statistical Modelling
2025 Semester One (1253)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3358

STATS 330

: Statistical Modelling
2025 Summer School (1250)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3359

STATS 330

: Statistical Modelling
2024 Semester Two (1245)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3360

STATS 330

: Statistical Modelling
2024 Semester One (1243)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3361

STATS 330

: Statistical Modelling
2024 Summer School (1240)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3362

STATS 330

: Statistical Modelling
2023 Semester Two (1235)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3363

STATS 330

: Statistical Modelling
2023 Semester One (1233)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3364

STATS 330

: Statistical Modelling
2023 Summer School (1230)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3365

STATS 330

: Statistical Modelling
2022 Semester Two (1225)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3366

STATS 330

: Statistical Modelling
2022 Semester One (1223)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3367

STATS 330

: Statistical Modelling
2022 Summer School (1220)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3368

STATS 330

: Statistical Modelling
2021 Semester Two (1215)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3369

STATS 330

: Statistical Modelling
2021 Semester One (1213)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3370

STATS 330

: Statistical Modelling
2020 Semester Two (1205)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3371

STATS 330

: Statistical Modelling
2020 Semester One (1203)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3372

STATS 331

: Introduction to Bayesian Statistics
2025 Semester Two (1255)
Introduces Bayesian data analysis using the WinBUGS software package and R. Topics include the Bayesian paradigm, hypothesis testing, point and interval estimates, graphical models, simulation and Bayesian inference, diagnosing MCMC, model checking and selection, ANOVA, regression, GLMs, hierarchical models and time series. Classical and Bayesian methods and interpretations are compared.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 263, STATS 201, 208 and 15 points from ENGSCI 111, ENGGEN 150, STATS 125
3373

STATS 331

: Introduction to Bayesian Statistics
2024 Semester Two (1245)
Introduces Bayesian data analysis using the WinBUGS software package and R. Topics include the Bayesian paradigm, hypothesis testing, point and interval estimates, graphical models, simulation and Bayesian inference, diagnosing MCMC, model checking and selection, ANOVA, regression, GLMs, hierarchical models and time series. Classical and Bayesian methods and interpretations are compared.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3374

STATS 331

: Introduction to Bayesian Statistics
2023 Semester Two (1235)
Introduces Bayesian data analysis using the WinBUGS software package and R. Topics include the Bayesian paradigm, hypothesis testing, point and interval estimates, graphical models, simulation and Bayesian inference, diagnosing MCMC, model checking and selection, ANOVA, regression, GLMs, hierarchical models and time series. Classical and Bayesian methods and interpretations are compared.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3375

STATS 331

: Introduction to Bayesian Statistics
2022 Semester Two (1225)
Introduces Bayesian data analysis using the WinBUGS software package and R. Topics include the Bayesian paradigm, hypothesis testing, point and interval estimates, graphical models, simulation and Bayesian inference, diagnosing MCMC, model checking and selection, ANOVA, regression, GLMs, hierarchical models and time series. Classical and Bayesian methods and interpretations are compared.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209