Search Course Outline

Showing 25 course outlines from 4702 matches

3426

STATS 325

: Stochastic Processes
2022 Semester Two (1225)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Subject: Statistics
Prerequisite: B+ or higher in STATS 125 or B or higher in STATS 210 or 225 or 320, and 15 points from ENGSCI 211, MATHS 208, 250
Restriction: STATS 721
3427

STATS 325

: Stochastic Processes
2021 Semester Two (1215)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Subject: Statistics
Prerequisite: B+ or higher in STATS 125 or B or higher in STATS 210 or 225 or 320, and 15 points from ENGSCI 211, MATHS 208, 250
Restriction: STATS 721
3428

STATS 325

: Stochastic Processes
2020 Semester Two (1205)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Subject: Statistics
Prerequisite: 15 points from STATS 125, 210, 320, with at least a B pass, 15 points from MATHS 208, 250, 253
Restriction: STATS 721
3429

STATS 326

: Applied Time Series Analysis
2025 Semester One (1253)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from ECON 211, ENGSCI 314, STATS 201, 208
Restriction: STATS 727
3430

STATS 326

: Applied Time Series Analysis
2024 Semester One (1243)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from ECON 211, ENGSCI 314, STATS 201, 208
Restriction: STATS 727
3431

STATS 326

: Applied Time Series Analysis
2023 Semester One (1233)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from ECON 211, ENGSCI 314, STATS 201, 208
Restriction: STATS 727
3432

STATS 326

: Applied Time Series Analysis
2022 Semester One (1223)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, ECON 211, STATS 201, 207, 208
Restriction: STATS 727
3433

STATS 326

: Applied Time Series Analysis
2021 Semester One (1213)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, ECON 211, STATS 201, 207, 208
Restriction: STATS 727
3434

STATS 326

: Applied Time Series Analysis
2021 Summer School (1210)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, ECON 211, STATS 201, 207, 208
Restriction: STATS 727
3435

STATS 326

: Applied Time Series Analysis
2020 Semester One (1203)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 208, BIOSCI 209, ECON 221
Restriction: STATS 727
3436

STATS 326

: Applied Time Series Analysis
2020 Summer School (1200)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 208, BIOSCI 209, ECON 221
Restriction: STATS 727
3437

STATS 330

: Statistical Modelling
2025 Semester Two (1255)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3438

STATS 330

: Statistical Modelling
2025 Semester One (1253)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3439

STATS 330

: Statistical Modelling
2025 Summer School (1250)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3440

STATS 330

: Statistical Modelling
2024 Semester Two (1245)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3441

STATS 330

: Statistical Modelling
2024 Semester One (1243)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3442

STATS 330

: Statistical Modelling
2024 Summer School (1240)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3443

STATS 330

: Statistical Modelling
2023 Semester Two (1235)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3444

STATS 330

: Statistical Modelling
2023 Semester One (1233)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3445

STATS 330

: Statistical Modelling
2023 Summer School (1230)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3446

STATS 330

: Statistical Modelling
2022 Semester Two (1225)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3447

STATS 330

: Statistical Modelling
2022 Semester One (1223)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3448

STATS 330

: Statistical Modelling
2022 Summer School (1220)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3449

STATS 330

: Statistical Modelling
2021 Semester Two (1215)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3450

STATS 330

: Statistical Modelling
2021 Semester One (1213)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209