Search Course Outline
Showing 25 course outlines from 4473 matches
3451
STATS 732
: Foundations of Statistical Inference2021 Semester One (1213)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310
Restriction: STATS 310
3452
STATS 732
: Foundations of Statistical Inference2020 Semester One (1203)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310
Restriction: STATS 310
3453
STATS 740
: Sample Surveys2024 Semester One (1243)
The design, management and analysis of sample surveys. Topics such as the following are studied. Types of Survey. Revision of statistical aspects of sampling. Preparing surveys. Research entry: problem selection, sponsorship and collaboration. Research design: methodology and data collection; Issues of sample design and sample selection. Conducting surveys: Questionnaires and questions; Non-sampling issues; Project management; Maintaining data quality. Concluding surveys: Analysis; Dissemination.
Prerequisite: 15 points from STATS 240, 330, 340, and 15 points from Stage II Mathematics
3454
STATS 740
: Sample Surveys2022 Semester Two (1225)
The design, management and analysis of sample surveys. Topics such as the following are studied. Types of Survey. Revision of statistical aspects of sampling. Preparing surveys. Research entry: problem selection, sponsorship and collaboration. Research design: methodology and data collection; Issues of sample design and sample selection. Conducting surveys: Questionnaires and questions; Non-sampling issues; Project management; Maintaining data quality. Concluding surveys: Analysis; Dissemination.
Prerequisite: 15 points from STATS 240, 330, 340, and 15 points from Stage II Mathematics
3455
STATS 740
: Sample Surveys2021 Semester Two (1215)
The design, management and analysis of sample surveys. Topics such as the following are studied. Types of Survey. Revision of statistical aspects of sampling. Preparing surveys. Research entry: problem selection, sponsorship and collaboration. Research design: methodology and data collection; Issues of sample design and sample selection. Conducting surveys: Questionnaires and questions; Non-sampling issues; Project management; Maintaining data quality. Concluding surveys: Analysis; Dissemination.
Prerequisite: 15 points from STATS 240, 330, 340, and 15 points from Stage II Mathematics
3456
STATS 740
: Sample Surveys2020 Semester Two (1205)
The design, management and analysis of sample surveys. Topics such as the following are studied. Types of Survey. Revision of statistical aspects of sampling. Preparing surveys. Research entry: problem selection, sponsorship and collaboration. Research design: methodology and data collection; Issues of sample design and sample selection. Conducting surveys: Questionnaires and questions; Non-sampling issues; Project management; Maintaining data quality. Concluding surveys: Analysis; Dissemination.
Prerequisite: 15 points from STATS 340, 741 and 15 points from STATS 310, 732
3457
STATS 747
: Statistical Methods in Marketing2021 Semester Two (1215)
Stochastic models of brand choice, applications of General Linear Models in marketing, conjoint analysis, advertising media models and marketing response models.
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, 210, 707
3458
STATS 747
: Statistical Methods in Marketing2020 Semester Two (1205)
Stochastic models of brand choice, applications of General Linear Models in marketing, conjoint analysis, advertising media models and marketing response models.
No pre-requisites or restrictions
3459
STATS 760
: A Survey of Modern Applied Statistics2020 Semester One (1203)
A survey of techniques from modern applied statistics. Topics covered will be linear, non-linear and generalised linear models, modern regression including CART and neural networks, mixed models, survival analysis, time series and spatial statistics.
Prerequisite: STATS 310, 330
3460
STATS 762
: Regression for Data Science2025 Semester One (1253)
Application of the generalised linear model to fit data arising from a wide range of sources, including multiple linear regression models, Poisson regression, and logistic regression models. The graphical exploration of data. Model building for prediction and for causal inference. Other regression models such as quantile regression. A basic understanding of vector spaces, matrix algebra and calculus will be assumed.
Prerequisite: 15 points from STATS 210, 225, 707, and 15 points from ENGSCI 314, STATS 201, 207, 208
Restriction: STATS 330
Restriction: STATS 330
3461
STATS 762
: Regression for Data Science2024 Semester One (1243)
Application of the generalised linear model to fit data arising from a wide range of sources, including multiple linear regression models, Poisson regression, and logistic regression models. The graphical exploration of data. Model building for prediction and for causal inference. Other regression models such as quantile regression. A basic understanding of vector spaces, matrix algebra and calculus will be assumed.
Prerequisite: 15 points from STATS 210, 225, 707, and 15 points from ENGSCI 314, STATS 201, 207, 208
Restriction: STATS 330
Restriction: STATS 330
3462
STATS 762
: Regression for Data Science2023 Semester One (1233)
Application of the generalised linear model to fit data arising from a wide range of sources, including multiple linear regression models, Poisson regression, and logistic regression models. The graphical exploration of data. Model building for prediction and for causal inference. Other regression models such as quantile regression. A basic understanding of vector spaces, matrix algebra and calculus will be assumed.
Prerequisite: STATS 707 or 210 or 225, and 15 points from STATS 201, 207, 208 or a B+ or higher in BIOSCI 209
Restriction: STATS 330
Restriction: STATS 330
3463
STATS 762
: Regression for Data Science2022 Semester One (1223)
Application of the generalised linear model to fit data arising from a wide range of sources, including multiple linear regression models, Poisson regression, and logistic regression models. The graphical exploration of data. Model building for prediction and for causal inference. Other regression models such as quantile regression. A basic understanding of vector spaces, matrix algebra and calculus will be assumed.
Prerequisite: STATS 707 or 210 or 225, and 15 points from STATS 201, 207, 208 or a B+ or higher in BIOSCI 209
Restriction: STATS 330
Restriction: STATS 330
3464
STATS 762
: Regression for Data Science2021 Semester One (1213)
Application of the generalised linear model to fit data arising from a wide range of sources, including multiple linear regression models, Poisson regression, and logistic regression models. The graphical exploration of data. Model building for prediction and for causal inference. Other regression models such as quantile regression. A basic understanding of vector spaces, matrix algebra and calculus will be assumed.
Prerequisite: STATS 707 or 210 or 225, and 15 points from STATS 201, 207, 208 or a B+ or higher in BIOSCI 209
Restriction: STATS 330
Restriction: STATS 330
3465
STATS 762
: Regression for Data Science2020 Semester One (1203)
Application of the generalised linear model to fit data arising from a wide range of sources, including multiple linear regression models, Poisson regression, and logistic regression models. The graphical exploration of data. Model building for prediction and for causal inference. Other regression models such as quantile regression. A basic understanding of vector spaces, matrix algebra and calculus will be assumed.
Prerequisite: STATS 707 or 210 or 225, and 15 points from STATS 201, 207, 208 or a B+ or higher in BIOSCI 209
Restriction: STATS 330
Restriction: STATS 330
3466
STATS 763
: Advanced Regression Methodology2025 Semester Two (1255)
Generalised linear models, generalised additive models, survival analysis. Smoothing and semiparametric regression. Marginal and conditional models for correlated data. Model selection for prediction and for control of confounding. Model criticism and testing. Computational methods for model fitting, including Bayesian approaches.
Prerequisite: STATS 210 or 225, and 15 points from STATS 330, 762 and 15 points at Stage II in Mathematics
3467
STATS 763
: Advanced Regression Methodology2024 Semester Two (1245)
Generalised linear models, generalised additive models, survival analysis. Smoothing and semiparametric regression. Marginal and conditional models for correlated data. Model selection for prediction and for control of confounding. Model criticism and testing. Computational methods for model fitting, including Bayesian approaches.
Prerequisite: STATS 210 or 225, and 15 points from STATS 330, 762 and 15 points at Stage II in Mathematics
3468
STATS 763
: Advanced Regression Methodology2023 Semester Two (1235)
Generalised linear models, generalised additive models, survival analysis. Smoothing and semiparametric regression. Marginal and conditional models for correlated data. Model selection for prediction and for control of confounding. Model criticism and testing. Computational methods for model fitting, including Bayesian approaches.
Prerequisite: STATS 210 or 225, and 15 points from STATS 330, 762 and 15 points at Stage II in Mathematics
3469
STATS 763
: Advanced Regression Methodology2022 Semester One (1223)
Generalised linear models, generalised additive models, survival analysis. Smoothing and semiparametric regression. Marginal and conditional models for correlated data. Model selection for prediction and for control of confounding. Model criticism and testing. Computational methods for model fitting, including Bayesian approaches.
Prerequisite: STATS 210 or 225, and 15 points from STATS 330, 762 and 15 points at Stage II in Mathematics
3470
STATS 763
: Advanced Regression Methodology2021 Semester One (1213)
Generalised linear models, generalised additive models, survival analysis. Smoothing and semiparametric regression. Marginal and conditional models for correlated data. Model selection for prediction and for control of confounding. Model criticism and testing. Computational methods for model fitting, including Bayesian approaches.
Prerequisite: STATS 210 and 225, and 15 points from STATS 330, 762 and 15 points at Stage II in Mathematics
3471
STATS 763
: Advanced Regression Methodology2020 Semester One (1203)
Generalised linear models, generalised additive models, survival analysis. Smoothing and semiparametric regression. Marginal and conditional models for correlated data. Model selection for prediction and for control of confounding. Model criticism and testing. Computational methods for model fitting, including Bayesian approaches.
No pre-requisites or restrictions
3472
STATS 765
: Statistical Learning for Data Science2025 Semester Two (1255)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208 and 15 points from STATS 210, 225, 707
Corequisite: May be taken with STATS 707
Restriction: STATS 369
Restriction: STATS 369
3473
STATS 765
: Statistical Learning for Data Science2024 Semester One (1243)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208 and 15 points from STATS 210, 225, 707
Corequisite: May be taken with STATS 707
Restriction: STATS 369
Restriction: STATS 369
3474
STATS 765
: Statistical Learning for Data Science2023 Semester One (1233)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Prerequisite: 15 points from STATS 201 or 207 or 208 and 15 points from STATS 210 or 225, or STATS 707
Corequisite: May be taken with STATS 707
Restriction: STATS 369
Restriction: STATS 369
3475
STATS 765
: Statistical Learning for Data Science2022 Semester One (1223)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Prerequisite: 15 points from STATS 201 or 207 or 208 and 15 points from STATS 210 or 225, or STATS 707
Corequisite: May be taken with STATS 707
Restriction: STATS 369
Restriction: STATS 369
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179