Search Course Outline

Showing 25 course outlines from 4702 matches

3526

STATS 726

: Time Series
2024 Semester Two (1245)
Stationary processes, modelling and estimation in the time domain, forecasting and spectral analysis.
Subject: Statistics
Prerequisite: STATS 210, and 15 points from STATS 326, 786
3527

STATS 726

: Time Series
2023 Semester Two (1235)
Stationary processes, modelling and estimation in the time domain, forecasting and spectral analysis.
Subject: Statistics
Prerequisite: STATS 210, and 320 or 325
3528

STATS 726

: Time Series
2022 Semester Two (1225)
Stationary processes, modelling and estimation in the time domain, forecasting and spectral analysis.
Subject: Statistics
Prerequisite: STATS 210, and 320 or 325
3529

STATS 726

: Time Series
2021 Semester Two (1215)
Stationary processes, modelling and estimation in the time domain, forecasting and spectral analysis.
Subject: Statistics
Prerequisite: STATS 210, and 320 or 325
3530

STATS 726

: Time Series
2020 Semester Two (1205)
Stationary processes, modelling and estimation in the time domain, forecasting and spectral analysis.
Subject: Statistics
No pre-requisites or restrictions
3531

STATS 727

: Foundations of Applied Time Series Analysis
2021 Semester One (1213)
Fundamentals of applied time series analysis. Topics include: components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas are presented.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, ECON 221, STATS 201, 207, 208, 707
Restriction: STATS 326
3532

STATS 727

: Foundations of Applied Time Series Analysis
2020 Semester One (1203)
Fundamentals of applied time series analysis. Topics include: components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas are presented.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, ECON 221, STATS 201, 207, 208
Restriction: STATS 326
3533

STATS 730

: Statistical Inference - Level 9
2025 Semester Two (1255)
Fundamental topics in estimation and statistical inference. Advanced topics in modelling including regression with dependent data, survival analysis, methods to handle missing data. Advanced topics in current statistical practice researched by students. Students will undertake and present individual research projects on assigned topics, consisting in a literature search and a computational application to a data analysis task.
Subject: Statistics
Prerequisite: STATS 310 or 732
3534

STATS 730

: Statistical Inference
2024 Semester Two (1245)
Fundamentals of likelihood-based inference, including sufficiency, conditioning, likelihood principle, statistical paradoxes. Theory and practice of maximum likelihood. Examples covered may include survival analysis, GLM's, nonlinear models, random effects and empirical Bayes models, and quasi-likelihood.
Subject: Statistics
Prerequisite: STATS 310 or 732
3535

STATS 730

: Statistical Inference
2023 Semester Two (1235)
Fundamentals of likelihood-based inference, including sufficiency, conditioning, likelihood principle, statistical paradoxes. Theory and practice of maximum likelihood. Examples covered may include survival analysis, GLM's, nonlinear models, random effects and empirical Bayes models, and quasi-likelihood.
Subject: Statistics
Prerequisite: STATS 310 or 732
3536

STATS 730

: Statistical Inference
2022 Semester Two (1225)
Fundamentals of likelihood-based inference, including sufficiency, conditioning, likelihood principle, statistical paradoxes. Theory and practice of maximum likelihood. Examples covered may include survival analysis, GLM's, nonlinear models, random effects and empirical Bayes models, and quasi-likelihood.
Subject: Statistics
Prerequisite: STATS 310 or 732
3537

STATS 730

: Statistical Inference
2021 Semester Two (1215)
Fundamentals of likelihood-based inference, including sufficiency, conditioning, likelihood principle, statistical paradoxes. Theory and practice of maximum likelihood. Examples covered may include survival analysis, GLM's, nonlinear models, random effects and empirical Bayes models, and quasi-likelihood.
Subject: Statistics
Prerequisite: STATS 310 or 732
3538

STATS 730

: Statistical Inference
2020 Semester Two (1205)
Fundamentals of likelihood-based inference, including sufficiency, conditioning, likelihood principle, statistical paradoxes. Theory and practice of maximum likelihood. Examples covered may include survival analysis, GLM's, nonlinear models, random effects and empirical Bayes models, and quasi-likelihood.
Subject: Statistics
Prerequisite: STATS 310 or 732
3539

STATS 731

: Bayesian Inference
2025 Semester Two (1255)
A course in practical Bayesian statistical inference covering: the Bayesian approach specification of prior distributions, decision-theoretic foundations, the likelihood principle, asymptotic approximations, simulation methods, Markov Chain Monte Carlo methods, the BUGS and CODA software, model assessment, hierarchical models, application in data analysis.
Subject: Statistics
Prerequisite: STATS 331 and 15 points from STATS 210, 225
3540

STATS 731

: Bayesian Inference
2024 Semester Two (1245)
A course in practical Bayesian statistical inference covering: the Bayesian approach specification of prior distributions, decision-theoretic foundations, the likelihood principle, asymptotic approximations, simulation methods, Markov Chain Monte Carlo methods, the BUGS and CODA software, model assessment, hierarchical models, application in data analysis.
Subject: Statistics
Prerequisite: STATS 331 and 15 points from STATS 210, 225
3541

STATS 731

: Bayesian Inference
2023 Semester Two (1235)
A course in practical Bayesian statistical inference covering: the Bayesian approach specification of prior distributions, decision-theoretic foundations, the likelihood principle, asymptotic approximations, simulation methods, Markov Chain Monte Carlo methods, the BUGS and CODA software, model assessment, hierarchical models, application in data analysis.
Subject: Statistics
Prerequisite: STATS 331 and 15 points from STATS 210, 225
3542

STATS 731

: Bayesian Inference
2022 Semester Two (1225)
A course in practical Bayesian statistical inference covering: the Bayesian approach specification of prior distributions, decision-theoretic foundations, the likelihood principle, asymptotic approximations, simulation methods, Markov Chain Monte Carlo methods, the BUGS and CODA software, model assessment, hierarchical models, application in data analysis.
Subject: Statistics
Prerequisite: STATS 210 or 225
3543

STATS 731

: Bayesian Inference
2021 Semester Two (1215)
A course in practical Bayesian statistical inference covering: the Bayesian approach specification of prior distributions, decision-theoretic foundations, the likelihood principle, asymptotic approximations, simulation methods, Markov Chain Monte Carlo methods, the BUGS and CODA software, model assessment, hierarchical models, application in data analysis.
Subject: Statistics
Prerequisite: STATS 210 or 225
3544

STATS 731

: Bayesian Inference
2020 Semester One (1203)
A course in practical Bayesian statistical inference covering: the Bayesian approach specification of prior distributions, decision-theoretic foundations, the likelihood principle, asymptotic approximations, simulation methods, Markov Chain Monte Carlo methods, the BUGS and CODA software, model assessment, hierarchical models, application in data analysis.
Subject: Statistics
Prerequisite: STATS 210 or 225
3545

STATS 732

: Foundations of Statistical Inference
2025 Semester One (1253)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310
3546

STATS 732

: Foundations of Statistical Inference
2024 Semester One (1243)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310
3547

STATS 732

: Foundations of Statistical Inference
2023 Semester One (1233)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310
3548

STATS 732

: Foundations of Statistical Inference
2022 Semester One (1223)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310
3549

STATS 732

: Foundations of Statistical Inference
2021 Semester One (1213)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310
3550

STATS 732

: Foundations of Statistical Inference
2020 Semester One (1203)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310