Search Course Outline

Showing 25 course outlines from 4499 matches

2276

MATHS 333

: Analysis in Higher Dimensions
2020 Semester One (1203)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Subject: Mathematics
Prerequisite: MATHS 332
2277

MATHS 334

: Algebraic Geometry
2023 Semester Two (1235)
Algebraic geometry is a branch of mathematics studying zeros of polynomials. The fundamental objects in algebraic geometry are algebraic varieties i.e., solution sets of systems of polynomial equations.
Subject: Mathematics
Prerequisite: MATHS 332, and at least one of MATHS 320, 328 and Departmental approval
Restriction: MATHS 734
2278

MATHS 334

: Algebraic Geometry
2021 Semester Two (1215)
Algebraic geometry is a branch of mathematics studying zeros of polynomials. The fundamental objects in algebraic geometry are algebraic varieties i.e., solution sets of systems of polynomial equations.
Subject: Mathematics
Prerequisite: MATHS 332, and at least one of MATHS 320, 328 and Departmental approval
Restriction: MATHS 734
2279

MATHS 340

: Real and Complex Calculus
2025 Semester Two (1255)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. This course extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253
Subject: Mathematics
Prerequisite: MATHS 250
2280

MATHS 340

: Real and Complex Calculus
2024 Semester Two (1245)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. This course extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253
Subject: Mathematics
Prerequisite: MATHS 250
2281

MATHS 340

: Real and Complex Calculus
2023 Semester Two (1235)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250
2282

MATHS 340

: Real and Complex Calculus
2022 Semester Two (1225)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250
2283

MATHS 340

: Real and Complex Calculus
2021 Semester Two (1215)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250
2284

MATHS 340

: Real and Complex Calculus
2020 Semester Two (1205)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250
2285

MATHS 341

: Complex Analysis
2025 Semester One (1253)
Explores functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three-line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
2286

MATHS 341

: Complex Analysis
2023 Semester One (1233)
Functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
2287

MATHS 341

: Complex Analysis
2021 Semester One (1213)
Functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
2288

MATHS 350

: Topology
2024 Semester Two (1245)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
2289

MATHS 350

: Topology
2022 Semester Two (1225)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
2290

MATHS 350

: Topology
2020 Semester Two (1205)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
2291

MATHS 361

: Partial Differential Equations
2025 Semester One (1253)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers linear PDEs, analytical methods for their solution and weak solutions. Recommended preparation: MATHS 253
Subject: Mathematics
Prerequisite: MATHS 250, 260
2292

MATHS 361

: Partial Differential Equations
2024 Semester One (1243)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers linear PDEs, analytical methods for their solution and weak solutions. Recommended preparation: MATHS 253
Subject: Mathematics
Prerequisite: MATHS 250, 260
2293

MATHS 361

: Partial Differential Equations
2023 Semester One (1233)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250, 260
2294

MATHS 361

: Partial Differential Equations
2022 Semester One (1223)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250, 260
2295

MATHS 361

: Partial Differential Equations
2021 Semester One (1213)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250, 260
2296

MATHS 361

: Partial Differential Equations
2020 Semester One (1203)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250, 260
2297

MATHS 362

: Methods in Applied Mathematics
2025 Semester Two (1255)
Covers a selection of techniques to analyse differential equations including the method of characteristics and asymptotic analysis. These methods are fundamental in the analysis of traffic flows, shocks and fluid flows. Introduces foundational concepts to quantify uncertainty in parameters of differential equations and is recommended for students intending to advance in Applied Mathematics.  Recommended preparation: MATHS 253, 361
Subject: Mathematics
Prerequisite: MATHS 250, 260
2298

MATHS 362

: Methods in Applied Mathematics
2024 Semester Two (1245)
Covers a selection of techniques to analyse differential equations including the method of characteristics and asymptotic analysis. These methods are fundamental in the analysis of traffic flows, shocks and fluid flows. Introduces foundational concepts to quantify uncertainty in parameters of differential equations and is recommended for students intending to advance in Applied Mathematics.  Recommended preparation: MATHS 253, 361
Subject: Mathematics
Prerequisite: MATHS 250, 260
2299

MATHS 362

: Methods in Applied Mathematics
2023 Semester Two (1235)
Covers a selection of techniques including the calculus of variations, asymptotic methods and models based on conservation laws. These methods are fundamental in the analysis of traffic flow, shocks, fluid flow, as well as in control theory, and the course is recommended for students intending to advance in Applied Mathematics. Recommended preparation: MATHS 253, 361.
Subject: Mathematics
Prerequisite:MATHS 250, 260
2300

MATHS 362

: Methods in Applied Mathematics
2022 Semester Two (1225)
Covers a selection of techniques including the calculus of variations, asymptotic methods and models based on conservation laws. These methods are fundamental in the analysis of traffic flow, shocks, fluid flow, as well as in control theory, and the course is recommended for students intending to advance in Applied Mathematics. Recommended preparation: MATHS 253, 361.
Subject: Mathematics
Prerequisite:MATHS 250, 260