Search Course Outline
Showing 25 course outlines from 9861 matches
7876
STATS 765
: Statistical Learning for Data Science2023 Semester One (1233)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Prerequisite: 15 points from STATS 201 or 207 or 208 and 15 points from STATS 210 or 225, or STATS 707
Corequisite: May be taken with STATS 707
Restriction: STATS 369
Restriction: STATS 369
7877
STATS 765
: Statistical Learning for Data Science2022 Semester One (1223)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Prerequisite: 15 points from STATS 201 or 207 or 208 and 15 points from STATS 210 or 225, or STATS 707
Corequisite: May be taken with STATS 707
Restriction: STATS 369
Restriction: STATS 369
7878
STATS 765
: Statistical Learning for Data Science2021 Semester One (1213)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Prerequisite: 15 points from STATS 201 or 207 or 208 and 15 points from STATS 210 or 225, or STATS 707
Corequisite: May be taken with STATS 707
Restriction: STATS 369
Restriction: STATS 369
7879
STATS 765
: Statistical Learning for Data Science2020 Semester One (1203)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Prerequisite: 15 points from STATS 201 or 207 or 208 and 15 points from STATS 210 or 225, or STATS 707
Corequisite: May be taken with STATS 707
Restriction: STATS 369
Restriction: STATS 369
7880
STATS 767
: Foundations of Applied Multivariate Analysis2025 Semester One (1253)
Fundamentals of exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208, 707
Restriction: STATS 302
Restriction: STATS 302
7881
STATS 767
: Foundations of Applied Multivariate Analysis2024 Semester One (1243)
Fundamentals of exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208, 707
Restriction: STATS 302
Restriction: STATS 302
7882
STATS 767
: Foundations of Applied Multivariate Analysis2023 Semester One (1233)
Fundamentals of exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, 707
Restriction: STATS 302
Restriction: STATS 302
7883
STATS 767
: Foundations of Applied Multivariate Analysis2022 Semester One (1223)
Fundamentals of exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, 707
Restriction: STATS 302
Restriction: STATS 302
7884
STATS 767
: Foundations of Applied Multivariate Analysis2021 Semester One (1213)
Fundamentals of exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, 707
Restriction: STATS 302
Restriction: STATS 302
7885
STATS 767
: Foundations of Applied Multivariate Analysis2020 Semester One (1203)
Fundamentals of exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208
Restriction: STATS 302
Restriction: STATS 302
7886
STATS 770
: Introduction to Medical Statistics2025 Semester One (1253)
An introduction to ideas of importance in medical statistics, such as measures of risk, basic types of medical study, causation, ethical issues and censoring, together with a review of common methodologies.
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208 and 15 points from STATS 210, 225, 707
7887
STATS 770
: Introduction to Medical Statistics2024 Semester One (1243)
An introduction to ideas of importance in medical statistics, such as measures of risk, basic types of medical study, causation, ethical issues and censoring, together with a review of common methodologies.
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208 and 15 points from STATS 210, 225, 707
7888
STATS 770
: Introduction to Medical Statistics2023 Semester One (1233)
An introduction to ideas of importance in medical statistics, such as measures of risk, basic types of medical study, causation, ethical issues and censoring, together with a review of common methodologies.
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208 and 15 points from STATS 210, 225, 707
7889
STATS 770
: Introduction to Medical Statistics2020 Semester One (1203)
An introduction to ideas of importance in medical statistics, such as measures of risk, basic types of medical study, causation, ethical issues and censoring, together with a review of common methodologies.
No pre-requisites or restrictions
7890
STATS 773
: Design and Analysis of Clinical Trials2025 Semester One (1253)
The theory and practice of clinical trials, including: design issues, data management, common analysis methodologies, intention to treat, compliance, interim analyses and ethical considerations.
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208, 707
7891
STATS 776
: Estimating Animal Abundance2025 Semester One (1253)
Fundamentals of the statistical methods that underly capture-recapture, distance sampling and occupancy analysis, focusing on the critical role that p, the probability of detection, plays in estimating n, the number of animals, or psi, the probability of species presence. Extensions to these fundamental tools including spatially explicit, genetic, and hierarchical methods will be covered.
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208, 707
7892
STATS 776
: Estimating Animal Abundance2024 Semester One (1243)
Fundamentals of the statistical methods that underly capture-recapture, distance sampling and occupancy analysis, focusing on the critical role that p, the probability of detection, plays in estimating n, the number of animals, or psi, the probability of species presence. Extensions to these fundamental tools including spatially explicit, genetic, and hierarchical methods will be covered.
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208, 707
7893
STATS 776
: Estimating Animal Abundance2023 Semester One (1233)
Fundamentals of the statistical methods that underly capture-recapture, distance sampling and occupancy analysis, focusing on the critical role that p, the probability of detection, plays in estimating n, the number of animals, or psi, the probability of species presence. Extensions to these fundamental tools including spatially explicit, genetic, and hierarchical methods will be covered.
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, 707
7894
STATS 776
: Estimating Animal Abundance2022 Semester One (1223)
Fundamentals of the statistical methods that underly capture-recapture, distance sampling and occupancy analysis, focusing on the critical role that p, the probability of detection, plays in estimating n, the number of animals, or psi, the probability of species presence. Extensions to these fundamental tools including spatially explicit, genetic, and hierarchical methods will be covered.
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, 707
7895
STATS 776
: Estimating Animal Abundance2021 Semester One (1213)
Fundamentals of the statistical methods that underly capture-recapture, distance sampling and occupancy analysis, focusing on the critical role that p, the probability of detection, plays in estimating n, the number of animals, or psi, the probability of species presence. Extensions to these fundamental tools including spatially explicit, genetic, and hierarchical methods will be covered.
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, 707
7896
STATS 776
: Topics in Environmental and Ecological Statistics2020 Semester One (1203)
No pre-requisites or restrictions
7897
STATS 779
: Professional Skills for Statisticians2025 Semester One (1253)
Statistical software, data management, data integrity, data transfer, file processing, symbolic manipulation, document design and presentation, oral presentation, professional ethics.
Prerequisite: 15 points from ENGSCI 314, STATS 201, 208, 707
7898
STATS 779
: Professional Skills for Statisticians2024 Semester One (1243)
Statistical software, data management, data integrity, data transfer, file processing, symbolic manipulation, document design and presentation, oral presentation, professional ethics.
Prerequisite: 15 points from ENGSCI 314, STATS 201, 208, 707
7899
STATS 779
: Professional Skills for Statisticians2023 Semester One (1233)
Statistical software, data management, data integrity, data transfer, file processing, symbolic manipulation, document design and presentation, oral presentation, professional ethics.
Prerequisite: STATS 201 or 208
7900
STATS 779
: Professional Skills for Statisticians2022 Semester One (1223)
Statistical software, data management, data integrity, data transfer, file processing, symbolic manipulation, document design and presentation, oral presentation, professional ethics.
No pre-requisites or restrictions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395