PHYSICS 703 : Advanced Quantum Mechanics


2023 Semester One (1233) (15 POINTS)

Course Prescription

An advanced development of nonrelativistic quantum mechanics in the Dirac formulation is presented. Emphasis is placed on the simplicity and generality of the formal structure, lifting the reliance of introductory courses on wave mechanics.

Course Overview

This course presents an advanced development of nonrelativistic quantum mechanics at the level of Hilbert spaces and the Dirac formalism. It aims to bring the simplicity and generality of the formalism to the fore, setting aside the reliance of introductory courses on the coordinate representation (wave mechanics). The development is a more abstract and coherent presentation of topics met before, and also has a broader outlook, e.g., unifying the Heisenberg version of quantum mechanics with the Schrödinger version met in elementary courses. This course aims to bring the advancing student to a level where professional discussions of quantum mechanics are understood. It provides the necessary background for entry into more specialised courses, such as quantum field theory, condensed matter physics, quantum optics and quantum information theory, and particle/nuclear physics.

Course Requirements

No pre-requisites or restrictions

Capabilities Developed in this Course

Capability 1: Disciplinary Knowledge and Practice
Capability 2: Critical Thinking
Capability 3: Solution Seeking
Capability 4: Communication and Engagement
Capability 5: Independence and Integrity

Learning Outcomes

By the end of this course, students will be able to:
  1. Define the basic elements of the Dirac formulation of quantum mechanics—ket vectors, bra vectors, operators, and use them to set up matrix representations of a Hilbert space, and the coordinate and momentum representations. (Capability 1)
  2. Define infinitesimal translation, rotation, and time evolution operators; demonstrate their use to describe linear momentum, angular momentum, and time evolution (Schrodinger, Heisenberg and interaction pictures), respectively. (Capability 1)
  3. Explain how the mathematical formalism in Dirac notation is used to make statistical predictions about measurements made in the lab. (Capability 1)
  4. Illustrate with examples how the relationship between mathematical formalism and measurements are different in quantum mechanics relative to classical mechanics and discuss the philosophical/interpretational implications for physical science. (Capability 1 and 2)
  5. Derive the eigenvalue spectra of physical observables for exactly solvable examples like the harmonic oscillator and a general angular momentum. (Capability 1)
  6. Apply approximate methods, in particular time-independent and -dependent perturbation theory, to the solution of practical problems, e.g., in atomic physics, the interaction of atoms with light and scattering from a potential. (Capability 1 and 3)
  7. Devise an appropriate mathematical strategy to solve a problem set out in physical terms, possibly consulting online resources and/or fellow students. (Capability 3 and 5)
  8. Present written solutions to assigned problems in a thoroughly argued manner, setting out the method used and all essential steps in a logical sequence. (Capability 4 and 5)


Assessment Type Percentage Classification
Assignments 40% Individual Coursework
Final Exam 60% Individual Examination
Assessment Type Learning Outcome Addressed
1 2 3 4 5 6 7 8
Final Exam


Tuākana Science is a multi-faceted programme for Māori and Pacific students providing topic specific tutorials, one-on-one sessions, test and exam preparation and more. Explore your options at

Workload Expectations

This course is a standard 15 point course and students are expected to spend 10 hours per week involved in each 15 point course that they are enrolled in.

For this course, a typical weekly workload includes:

  • 2 hours of lectures
  • A 1-hour tutorial
  • 3 hours of reviewing the course content
  • 4 hours of work on assignments and/or test preparation

Delivery Mode

Campus Experience

Attendance is expected at scheduled activities including tutorials to complete components of the course.
The course will not include live online events.
Attendance on campus is required for the exam.
The activities for the course are scheduled as a standard weekly timetable.

Learning Resources

Course materials are made available in a learning and collaboration tool called Canvas which also includes reading lists and lecture recordings (where available).

Please remember that the recording of any class on a personal device requires the permission of the instructor.

Course Notes:
  • Lecture notes will be provided and made available on Canvas as pdfs.
Recommended Readings:
  • The recommended textbook is available in a number of different (essentially equivalent) versions:
  • Modern Quantum Mechanics, J. J. Sakurai, Revised Edition (Addison-Wesley, 1994)
  • Modern Quantum Mechanics, J. J. Sakurai and Jim Napolitano, Second Edition (Addison Wesley, 2011)
  • Modern Quantum Mechanics, J. J. Sakurai and Jim Napolitano, Third Edition (Cambridge University Press, 2021)

Student Feedback

During the course Class Representatives in each class can take feedback to the staff responsible for the course and staff-student consultative committees.

At the end of the course students will be invited to give feedback on the course and teaching through a tool called SET or Qualtrics. The lecturers and course co-ordinators will consider all feedback.

Your feedback helps to improve the course and its delivery for all students.

Present more worked examples in tutorials. Have students work on problems during tutorials.

Academic Integrity

The University of Auckland will not tolerate cheating, or assisting others to cheat, and views cheating in coursework as a serious academic offence. The work that a student submits for grading must be the student's own work, reflecting their learning. Where work from other sources is used, it must be properly acknowledged and referenced. This requirement also applies to sources on the internet. A student's assessed work may be reviewed against online source material using computerised detection mechanisms.

Class Representatives

Class representatives are students tasked with representing student issues to departments, faculties, and the wider university. If you have a complaint about this course, please contact your class rep who will know how to raise it in the right channels. See your departmental noticeboard for contact details for your class reps.


The content and delivery of content in this course are protected by copyright. Material belonging to others may have been used in this course and copied by and solely for the educational purposes of the University under license.

You may copy the course content for the purposes of private study or research, but you may not upload onto any third party site, make a further copy or sell, alter or further reproduce or distribute any part of the course content to another person.

Inclusive Learning

All students are asked to discuss any impairment related requirements privately, face to face and/or in written form with the course coordinator, lecturer or tutor.

Student Disability Services also provides support for students with a wide range of impairments, both visible and invisible, to succeed and excel at the University. For more information and contact details, please visit the Student Disability Services’ website

Special Circumstances

If your ability to complete assessed coursework is affected by illness or other personal circumstances outside of your control, contact a member of teaching staff as soon as possible before the assessment is due.

If your personal circumstances significantly affect your performance, or preparation, for an exam or eligible written test, refer to the University’s aegrotat or compassionate consideration page

This should be done as soon as possible and no later than seven days after the affected test or exam date.

Learning Continuity

In the event of an unexpected disruption, we undertake to maintain the continuity and standard of teaching and learning in all your courses throughout the year. If there are unexpected disruptions the University has contingency plans to ensure that access to your course continues and course assessment continues to meet the principles of the University’s assessment policy. Some adjustments may need to be made in emergencies. You will be kept fully informed by your course co-ordinator/director, and if disruption occurs you should refer to the university website for information about how to proceed.

The delivery mode may change depending on COVID restrictions. Any changes will be communicated through Canvas.

Student Charter and Responsibilities

The Student Charter assumes and acknowledges that students are active participants in the learning process and that they have responsibilities to the institution and the international community of scholars. The University expects that students will act at all times in a way that demonstrates respect for the rights of other students and staff so that the learning environment is both safe and productive. For further information visit Student Charter


Elements of this outline may be subject to change. The latest information about the course will be available for enrolled students in Canvas.

In this course students may be asked to submit coursework assessments digitally. The University reserves the right to conduct scheduled tests and examinations for this course online or through the use of computers or other electronic devices. Where tests or examinations are conducted online remote invigilation arrangements may be used. In exceptional circumstances changes to elements of this course may be necessary at short notice. Students enrolled in this course will be informed of any such changes and the reasons for them, as soon as possible, through Canvas.

Published on 31/10/2022 09:31 a.m.