Search Course Outline
Showing 25 course outlines from 3705 matches
2751
STATS 313
: Advanced Topics in Probability2022 Semester Two (1225)
Characterisations of and relations between different kinds of random objects including random functions, random paths and random trees. Modes of convergence; the Law of Large Numbers and Central Limit Theorem.
Prerequisite: STATS 225
Restriction: STATS 710
Restriction: STATS 710
2752
STATS 320
: Applied Stochastic Modelling2024 Semester One (1243)
Construction, analysis and simulation of stochastic models, and optimisation problems associated with them. Poisson process, Markov chains, continuous-time Markov processes. Equilibrium distribution, reaching probabilities and times, transient behaviour. Use of R to simulate simple stochastic processes. Examples drawn from a range of applications including operations research, biology, and finance.
Prerequisite: 15 points from STATS 125, 210, 225 and 15 points from STATS 201, 208, 220, or ENGSCI 314
2753
STATS 320
: Applied Stochastic Modelling2023 Semester One (1233)
Introduction to stochastic modelling, with an emphasis on queues and models used in finance. Behaviour of Poisson processes, queues and continuous time Markov chains will be investigated using theory and simulation.
Prerequisite: 15 points from STATS 125, 210, 225 and 15 points from STATS 201, 208, 220, or ENGSCI 314
2754
STATS 320
: Applied Stochastic Modelling2022 Semester One (1223)
Introduction to stochastic modelling, with an emphasis on queues and models used in finance. Behaviour of Poisson processes, queues and continuous time Markov chains will be investigated using theory and simulation.
Prerequisite: 15 points from STATS 125, 210, 225 and 15 points from STATS 201, 207, 208, 220, BIOSCI 209
2755
STATS 320
: Applied Stochastic Modelling2021 Semester One (1213)
Introduction to stochastic modelling, with an emphasis on queues and models used in finance. Behaviour of Poisson processes, queues and continuous time Markov chains will be investigated using theory and simulation.
Prerequisite: 15 points from STATS 125, 210, 225 and 15 points from STATS 201, 207, 208, 220, BIOSCI 209
2756
STATS 320
: Applied Stochastic Modelling2020 Semester One (1203)
Introduction to stochastic modelling, with an emphasis on queues and models used in finance. Behaviour of Poisson processes, queues and continuous time Markov chains will be investigated using theory and simulation.
Prerequisite: 15 points from STATS 125, 210, 225 and 15 points from STATS 201, 207, 208, 220, BIOSCI 209
2757
STATS 325
: Stochastic Processes2024 Semester Two (1245)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Prerequisite: B+ or higher in STATS 125 or B or higher in ENGSCI 314 or STATS 210 or 225 or 320, and 15 points from ENGSCI 211, MATHS 208, 250
Restriction: STATS 721
Restriction: STATS 721
2758
STATS 325
: Stochastic Processes2023 Semester Two (1235)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Prerequisite: B+ or higher in STATS 125 or B or higher in ENGSCI 314 or STATS 210 or 225 or 320, and 15 points from ENGSCI 211, MATHS 208, 250
Restriction: STATS 721
Restriction: STATS 721
2759
STATS 325
: Stochastic Processes2022 Semester Two (1225)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Prerequisite: B+ or higher in STATS 125 or B or higher in STATS 210 or 225 or 320, and 15 points from ENGSCI 211, MATHS 208, 250
Restriction: STATS 721
Restriction: STATS 721
2760
STATS 325
: Stochastic Processes2021 Semester Two (1215)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Prerequisite: B+ or higher in STATS 125 or B or higher in STATS 210 or 225 or 320, and 15 points from ENGSCI 211, MATHS 208, 250
Restriction: STATS 721
Restriction: STATS 721
2761
STATS 325
: Stochastic Processes2020 Semester Two (1205)
Introduction to stochastic processes, including generating functions, branching processes, Markov chains, random walks.
Prerequisite: 15 points from STATS 125, 210, 320, with at least a B pass, 15 points from MATHS 208, 250, 253
Restriction: STATS 721
Restriction: STATS 721
2762
STATS 326
: Applied Time Series Analysis2024 Semester One (1243)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Prerequisite: 15 points from ECON 211, ENGSCI 314, STATS 201, 208
Restriction: STATS 727
Restriction: STATS 727
2763
STATS 326
: Applied Time Series Analysis2023 Semester One (1233)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Prerequisite: 15 points from ECON 211, ENGSCI 314, STATS 201, 208
Restriction: STATS 727
Restriction: STATS 727
2764
STATS 326
: Applied Time Series Analysis2022 Semester One (1223)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Prerequisite: 15 points from BIOSCI 209, ECON 211, STATS 201, 207, 208
Restriction: STATS 727
Restriction: STATS 727
2765
STATS 326
: Applied Time Series Analysis2021 Semester One (1213)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Prerequisite: 15 points from BIOSCI 209, ECON 211, STATS 201, 207, 208
Restriction: STATS 727
Restriction: STATS 727
2766
STATS 326
: Applied Time Series Analysis2021 Summer School (1210)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Prerequisite: 15 points from BIOSCI 209, ECON 211, STATS 201, 207, 208
Restriction: STATS 727
Restriction: STATS 727
2767
STATS 326
: Applied Time Series Analysis2020 Semester One (1203)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Prerequisite: 15 points from STATS 201, 208, BIOSCI 209, ECON 221
Restriction: STATS 727
Restriction: STATS 727
2768
STATS 326
: Applied Time Series Analysis2020 Summer School (1200)
Components, decompositions, smoothing and filtering, modelling and forecasting. Examples and techniques from a variety of application areas.
Prerequisite: 15 points from STATS 201, 208, BIOSCI 209, ECON 221
Restriction: STATS 727
Restriction: STATS 727
2769
STATS 330
: Statistical Modelling2024 Semester Two (1245)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Prerequisite: ENGSCI 314 or STATS 201 or 208
2770
STATS 330
: Statistical Modelling2024 Semester One (1243)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Prerequisite: ENGSCI 314 or STATS 201 or 208
2771
STATS 330
: Statistical Modelling2024 Summer School (1240)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Prerequisite: ENGSCI 314 or STATS 201 or 208
2772
STATS 330
: Statistical Modelling2023 Semester Two (1235)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Prerequisite: ENGSCI 314 or STATS 201 or 208
2773
STATS 330
: Statistical Modelling2023 Semester One (1233)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Prerequisite: ENGSCI 314 or STATS 201 or 208
2774
STATS 330
: Statistical Modelling2023 Summer School (1230)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Prerequisite: ENGSCI 314 or STATS 201 or 208
2775
STATS 330
: Statistical Modelling2022 Semester Two (1225)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149