Search Course Outline
Showing 25 course outlines from 3708 matches
1451
MATHS 253
: Algebra and Calculus 32020 Semester One (1203)
A sequel to MATHS 250, further developing and bringing together linear algebra and calculus. Students will learn about quadratic forms, projections, spectral decomposition, methods of multicriteria optimisation, double, triple and line integrals, Green’s theorem and applications.
Prerequisite: MATHS 250
1452
MATHS 254
: Fundamental Concepts of Mathematics2023 Semester Two (1235)
Fundamentals of mathematics important to many branches of the subject and its applications. Topics include equivalence relations, elementary number theory, counting techniques, elementary probability, geometry, symmetry and metric spaces. This is an essential course for all students advancing beyond Stage II in pure mathematics, and highly suitable for other students in the mathematical sciences.
Corequisite: MATHS 250
1453
MATHS 254
: Fundamental Concepts of Mathematics2023 Semester One (1233)
Fundamentals of mathematics important to many branches of the subject and its applications. Topics include equivalence relations, elementary number theory, counting techniques, elementary probability, geometry, symmetry and metric spaces. This is an essential course for all students advancing beyond Stage II in pure mathematics, and highly suitable for other students in the mathematical sciences.
Corequisite: MATHS 250
1454
MATHS 254
: Fundamental Concepts of Mathematics2022 Semester Two (1225)
Fundamentals of mathematics important to many branches of the subject and its applications. Topics include equivalence relations, elementary number theory, counting techniques, elementary probability, geometry, symmetry and metric spaces. This is an essential course for all students advancing beyond Stage II in pure mathematics, and highly suitable for other students in the mathematical sciences.
Corequisite: MATHS 250
Restriction: MATHS 255
Restriction: MATHS 255
1455
MATHS 254
: Fundamental Concepts of Mathematics2022 Semester One (1223)
Fundamentals of mathematics important to many branches of the subject and its applications. Topics include equivalence relations, elementary number theory, counting techniques, elementary probability, geometry, symmetry and metric spaces. This is an essential course for all students advancing beyond Stage II in pure mathematics, and highly suitable for other students in the mathematical sciences.
Corequisite: MATHS 250
Restriction: MATHS 255
Restriction: MATHS 255
1456
MATHS 254
: Fundamental Concepts of Mathematics2021 Semester Two (1215)
Fundamentals of mathematics important to many branches of the subject and its applications. Topics include equivalence relations, elementary number theory, counting techniques, elementary probability, geometry, symmetry and metric spaces. This is an essential course for all students advancing beyond Stage II in pure mathematics, and highly suitable for other students in the mathematical sciences.
Corequisite: MATHS 250
Restriction: MATHS 255
Restriction: MATHS 255
1457
MATHS 254
: Fundamental Concepts of Mathematics2021 Semester One (1213)
Fundamentals of mathematics important to many branches of the subject and its applications. Topics include equivalence relations, elementary number theory, counting techniques, elementary probability, geometry, symmetry and metric spaces. This is an essential course for all students advancing beyond Stage II in pure mathematics, and highly suitable for other students in the mathematical sciences.
Corequisite: MATHS 250
Restriction: MATHS 255
Restriction: MATHS 255
1458
MATHS 254
: Fundamental Concepts of Mathematics2020 Semester Two (1205)
Fundamentals of mathematics important to many branches of the subject and its applications. Topics include equivalence relations, elementary number theory, counting techniques, elementary probability, geometry, symmetry and metric spaces. This is an essential course for all students advancing beyond Stage II in pure mathematics, and highly suitable for other students in the mathematical sciences.
Corequisite: MATHS 250
Restriction: MATHS 255
Restriction: MATHS 255
1459
MATHS 254
: Fundamental Concepts of Mathematics2020 Semester One (1203)
Fundamentals of mathematics important to many branches of the subject and its applications. Topics include equivalence relations, elementary number theory, counting techniques, elementary probability, geometry, symmetry and metric spaces. This is an essential course for all students advancing beyond Stage II in pure mathematics, and highly suitable for other students in the mathematical sciences.
Corequisite: MATHS 250
Restriction: MATHS 255
Restriction: MATHS 255
1460
MATHS 260
: Differential Equations2023 Semester Two (1235)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1461
MATHS 260
: Differential Equations2023 Semester One (1233)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1462
MATHS 260
: Differential Equations2022 Semester Two (1225)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1463
MATHS 260
: Differential Equations2022 Semester One (1223)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1464
MATHS 260
: Differential Equations2021 Semester Two (1215)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1465
MATHS 260
: Differential Equations2021 Semester One (1213)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1466
MATHS 260
: Differential Equations2020 Semester Two (1205)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1467
MATHS 260
: Differential Equations2020 Semester One (1203)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1468
MATHS 270
: Numerical Computation2023 Semester Two (1235)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110 and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1469
MATHS 270
: Numerical Computation2022 Semester Two (1225)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1470
MATHS 270
: Numerical Computation2021 Semester Two (1215)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1471
MATHS 270
: Numerical Computation2021 Semester One (1213)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1472
MATHS 270
: Numerical Computation2020 Semester Two (1205)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1473
MATHS 270
: Numerical Computation2020 Semester One (1203)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1474
MATHS 302
: Perspectives in Mathematics Education2023 Semester Two (1235)
For people interested in thinking about the social, cultural, political, economic, historical, technological and theoretical ideas that influence mathematics education, who want to understand the forces that shaped their own mathematics education, or who are interested in teaching. Students will develop their ability to communicate ideas in essay form. Recommended preparation: At least 45 points from courses in Mathematics or Statistics.
No pre-requisites or restrictions
1475
MATHS 302
: Perspectives in Mathematics Education2022 Semester Two (1225)
For people interested in thinking about the social, cultural, political, economic, historical, technological and theoretical ideas that influence mathematics education, who want to understand the forces that shaped their own mathematics education, or who are interested in teaching. Students will develop their ability to communicate ideas in essay form. Recommended preparation: At least 45 points from courses in Mathematics or Statistics.
No pre-requisites or restrictions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149