Search Course Outline

Showing 25 course outlines from 2938 matches

1451

MATHS 254

: Fundamental Concepts of Mathematics
2020 Semester Two (1205)
Fundamentals of mathematics important to many branches of the subject and its applications. Topics include equivalence relations, elementary number theory, counting techniques, elementary probability, geometry, symmetry and metric spaces. This is an essential course for all students advancing beyond Stage II in pure mathematics, and highly suitable for other students in the mathematical sciences.
Subject: Mathematics
Corequisite: MATHS 250
Restriction: MATHS 255
1452

MATHS 254

: Fundamental Concepts of Mathematics
2020 Semester One (1203)
Fundamentals of mathematics important to many branches of the subject and its applications. Topics include equivalence relations, elementary number theory, counting techniques, elementary probability, geometry, symmetry and metric spaces. This is an essential course for all students advancing beyond Stage II in pure mathematics, and highly suitable for other students in the mathematical sciences.
Subject: Mathematics
Corequisite: MATHS 250
Restriction: MATHS 255
1453

MATHS 260

: Differential Equations
2023 Semester Two (1235)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1454

MATHS 260

: Differential Equations
2023 Semester One (1233)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1455

MATHS 260

: Differential Equations
2022 Semester Two (1225)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1456

MATHS 260

: Differential Equations
2022 Semester One (1223)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1457

MATHS 260

: Differential Equations
2021 Semester Two (1215)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1458

MATHS 260

: Differential Equations
2021 Semester One (1213)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1459

MATHS 260

: Differential Equations
2020 Semester Two (1205)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1460

MATHS 260

: Differential Equations
2020 Semester One (1203)
The study of differential equations is central to mathematical modelling of systems that change. Develops methods for understanding the behaviour of solutions to ordinary differential equations. Qualitative and elementary numerical methods for obtaining information about solutions are discussed, as well as some analytical techniques for finding exact solutions in certain cases. Some applications of differential equations to scientific modelling are discussed. A core course for Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 208 or 250 or ENGSCI 211 or a concurrent enrolment in MATHS 250
1461

MATHS 270

: Numerical Computation
2023 Semester Two (1235)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110 and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1462

MATHS 270

: Numerical Computation
2022 Semester Two (1225)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1463

MATHS 270

: Numerical Computation
2021 Semester Two (1215)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1464

MATHS 270

: Numerical Computation
2021 Semester One (1213)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1465

MATHS 270

: Numerical Computation
2020 Semester Two (1205)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1466

MATHS 270

: Numerical Computation
2020 Semester One (1203)
Many mathematical models occurring in Science and Engineering cannot be solved exactly using algebra and calculus. Students are introduced to computer-based methods that can be used to find approximate solutions to these problems. The methods covered in the course are powerful yet simple to use. This is a core course for students who wish to advance in Applied Mathematics.
Subject: Mathematics
Prerequisite: MATHS 120 and 130, or 15 points from ENGGEN 150, ENGSCI 111, MATHS 108, 110, 150, 153, and 15 points from COMPSCI 101, 105, 130, INFOSYS 110, 120, MATHS 162, 199
1467

MATHS 302

: Perspectives in Mathematics Education
2023 Semester Two (1235)
For people interested in thinking about the social, cultural, political, economic, historical, technological and theoretical ideas that influence mathematics education, who want to understand the forces that shaped their own mathematics education, or who are interested in teaching. Students will develop their ability to communicate ideas in essay form. Recommended preparation: At least 45 points from courses in Mathematics or Statistics.
Subject: Mathematics
No pre-requisites or restrictions
1468

MATHS 302

: Perspectives in Mathematics Education
2022 Semester Two (1225)
For people interested in thinking about the social, cultural, political, economic, historical, technological and theoretical ideas that influence mathematics education, who want to understand the forces that shaped their own mathematics education, or who are interested in teaching. Students will develop their ability to communicate ideas in essay form. Recommended preparation: At least 45 points from courses in Mathematics or Statistics.
Subject: Mathematics
No pre-requisites or restrictions
1469

MATHS 302

: Perspectives in Mathematics Education
2021 Semester Two (1215)
For people interested in thinking about the social, cultural, political, economic, historical, technological and theoretical ideas that influence mathematics education, who want to understand the forces that shaped their own mathematics education, or who are interested in teaching. Students will develop their ability to communicate ideas in essay form. Recommended preparation: At least 45 points from courses in Mathematics or Statistics.
Subject: Mathematics
No pre-requisites or restrictions
1470

MATHS 302

: Perspectives in Mathematics Education
2020 Semester Two (1205)
For people interested in thinking about the social, cultural, political, economic, historical, technological and theoretical ideas that influence mathematics education, who want to understand the forces that shaped their own mathematics education, or who are interested in teaching. Students will develop their ability to communicate ideas in essay form. Recommended preparation: At least 45 points from courses in Mathematics or Statistics.
Subject: Mathematics
No pre-requisites or restrictions
1471

MATHS 315

: Mathematical Logic
2023 Semester Two (1235)
Logic addresses the foundations of mathematical reasoning. It models the process of mathematical proof by providing a setting and the rules of deduction. Builds a basic understanding of first order predicate logic, introduces model theory and demonstrates how models of a first order system relate to mathematical structures. The course is recommended for anyone studying high level computer science or mathematical logic.
Subject: Mathematics
Prerequisite: B+ or higher in COMPSCI 225 or MATHS 254 or PHIL 222
1472

MATHS 315

: Mathematical Logic
2022 Semester Two (1225)
Logic addresses the foundations of mathematical reasoning. It models the process of mathematical proof by providing a setting and the rules of deduction. Builds a basic understanding of first order predicate logic, introduces model theory and demonstrates how models of a first order system relate to mathematical structures. The course is recommended for anyone studying high level computer science or mathematical logic.
Subject: Mathematics
Prerequisite: B+ or higher in COMPSCI 225 or MATHS 254 or 255 or PHIL 222
1473

MATHS 315

: Mathematical Logic
2021 Semester Two (1215)
Logic addresses the foundations of mathematical reasoning. It models the process of mathematical proof by providing a setting and the rules of deduction. Builds a basic understanding of first order predicate logic, introduces model theory and demonstrates how models of a first order system relate to mathematical structures. The course is recommended for anyone studying high level computer science or mathematical logic.
Subject: Mathematics
Prerequisite: B+ or higher in COMPSCI 225 or MATHS 254 or 255 or PHIL 222
1474

MATHS 315

: Mathematical Logic
2020 Semester Two (1205)
Logic addresses the foundations of mathematical reasoning. It models the process of mathematical proof by providing a setting and the rules of deduction. Builds a basic understanding of first order predicate logic, introduces model theory and demonstrates how models of a first order system relate to mathematical structures. The course is recommended for anyone studying high level computer science or mathematical logic.
Subject: Mathematics
Prerequisite: B+ or higher in COMPSCI 225 or MATHS 254 or 255 or PHIL 222
1475

MATHS 320

: Algebraic Structures
2023 Semester Two (1235)
This is a framework for a unified treatment of many different mathematical structures. It concentrates on the fundamental notions of groups, rings and fields. The abstract descriptions are accompanied by numerous concrete examples. Applications abound: symmetries, geometry, coding theory, cryptography and many more. This course is recommended for those planning graduate study in pure mathematics.
Subject: Mathematics
Prerequisite: MATHS 250, 254