Search Course Outline
Showing 25 course outlines from 2938 matches
1476
MATHS 320
: Algebraic Structures2022 Semester Two (1225)
This is a framework for a unified treatment of many different mathematical structures. It concentrates on the fundamental notions of groups, rings and fields. The abstract descriptions are accompanied by numerous concrete examples. Applications abound: symmetries, geometry, coding theory, cryptography and many more. This course is recommended for those planning graduate study in pure mathematics.
Prerequisite: MATHS 250, and MATHS 254 or 255
1477
MATHS 320
: Algebraic Structures2021 Semester Two (1215)
This is a framework for a unified treatment of many different mathematical structures. It concentrates on the fundamental notions of groups, rings and fields. The abstract descriptions are accompanied by numerous concrete examples. Applications abound: symmetries, geometry, coding theory, cryptography and many more. This course is recommended for those planning graduate study in pure mathematics.
Prerequisite: MATHS 250, and MATHS 254 or 255
1478
MATHS 320
: Algebraic Structures2020 Semester Two (1205)
This is a framework for a unified treatment of many different mathematical structures. It concentrates on the fundamental notions of groups, rings and fields. The abstract descriptions are accompanied by numerous concrete examples. Applications abound: symmetries, geometry, coding theory, cryptography and many more. This course is recommended for those planning graduate study in pure mathematics.
Prerequisite: MATHS 250, and MATHS 254 or 255
1479
MATHS 326
: Combinatorics2023 Semester One (1233)
Combinatorics is a branch of mathematics that studies collections of objects that satisfy specified criteria. An important part of combinatorics is graph theory, which is now connected to other disciplines including bioinformatics, electrical engineering, molecular chemistry and social science. The use of combinatorics in solving counting and construction problems is covered using topics that include algorithmic graph theory, codes and incidence structures, and combinatorial complexity.
Prerequisite: MATHS 250 or 254, and a B+ or higher in COMPSCI 225
1480
MATHS 326
: Combinatorics2022 Semester One (1223)
Combinatorics is a branch of mathematics that studies collections of objects that satisfy specified criteria. An important part of combinatorics is graph theory, which is now connected to other disciplines including bioinformatics, electrical engineering, molecular chemistry and social science. The use of combinatorics in solving counting and construction problems is covered using topics that include algorithmic graph theory, codes and incidence structures, and combinatorial complexity.
Prerequisite: MATHS 254 or 255, or MATHS 250 and a B+ or higher in COMPSCI 225
1481
MATHS 326
: Combinatorics2021 Semester One (1213)
Combinatorics is a branch of mathematics that studies collections of objects that satisfy specified criteria. An important part of combinatorics is graph theory, which is now connected to other disciplines including bioinformatics, electrical engineering, molecular chemistry and social science. The use of combinatorics in solving counting and construction problems is covered using topics that include algorithmic graph theory, codes and incidence structures, and combinatorial complexity.
Prerequisite: MATHS 254 or 255, or MATHS 250 and a B+ or higher in COMPSCI 225, or a B+ or higher in both COMPSCI 225 and MATHS 208
1482
MATHS 326
: Combinatorics2020 Semester One (1203)
Combinatorics is a branch of mathematics that studies collections of objects that satisfy specified criteria. An important part of combinatorics is graph theory, which is now connected to other disciplines including bioinformatics, electrical engineering, molecular chemistry and social science. The use of combinatorics in solving counting and construction problems is covered using topics that include algorithmic graph theory, codes and incidence structures, and combinatorial complexity.
Prerequisite: MATHS 254 or 255, or COMPSCI 225 and a B+ or higher in MATHS 208, or COMPSCI 225 and MATHS 250
1483
MATHS 328
: Algebra and Applications2023 Semester One (1233)
The goal of this course is to show the power of algebra and number theory in the real world. It concentrates on concrete objects like polynomial rings, finite fields, groups of points on elliptic curves, studies their elementary properties and shows their exceptional applicability to various problems in information technology including cryptography, secret sharing, and reliable transmission of information through an unreliable channel.
Prerequisite: MATHS 250 and 254, or a B+ or higher in COMPSCI 225 and 15 points from MATHS 250, 253
1484
MATHS 328
: Algebra and Applications2022 Semester One (1223)
The goal of this course is to show the power of algebra and number theory in the real world. It concentrates on concrete objects like polynomial rings, finite fields, groups of points on elliptic curves, studies their elementary properties and shows their exceptional applicability to various problems in information technology including cryptography, secret sharing, and reliable transmission of information through an unreliable channel.
Prerequisite: MATHS 250, and 254 or 255, or a B+ or higher in COMPSCI 225 and 15 points from MATHS 250, 253
1485
MATHS 328
: Algebra and Applications2021 Semester One (1213)
The goal of this course is to show the power of algebra and number theory in the real world. It concentrates on concrete objects like polynomial rings, finite fields, groups of points on elliptic curves, studies their elementary properties and shows their exceptional applicability to various problems in information technology including cryptography, secret sharing, and reliable transmission of information through an unreliable channel.
Prerequisite: MATHS 250, and MATHS 254 or 255, or a B+ or higher in COMPSCI 225 and 15 points from MATHS 208, 250, 253
1486
MATHS 328
: Algebra and Applications2020 Semester One (1203)
The goal of this course is to show the power of algebra and number theory in the real world. It concentrates on concrete objects like polynomial rings, finite fields, groups of points on elliptic curves, studies their elementary properties and shows their exceptional applicability to various problems in information technology including cryptography, secret sharing, and reliable transmission of information through an unreliable channel.
Prerequisite: MATHS 250, and MATHS 254 or 255, or a B+ or higher in COMPSCI 225 and 15 points from MATHS 208, 250, 253
1487
MATHS 332
: Real Analysis2023 Semester Two (1235)
A standard course for every student intending to advance in pure mathematics. It develops the foundational mathematics underlying calculus, it introduces a rigorous approach to continuous mathematics and fosters an understanding of the special thinking and arguments involved in this area. The main focus is analysis in one real variable with the topics including real fields, limits and continuity, Riemann integration and power series.
Prerequisite: MATHS 250, 254
1488
MATHS 332
: Real Analysis2022 Semester Two (1225)
A standard course for every student intending to advance in pure mathematics. It develops the foundational mathematics underlying calculus, it introduces a rigorous approach to continuous mathematics and fosters an understanding of the special thinking and arguments involved in this area. The main focus is analysis in one real variable with the topics including real fields, limits and continuity, Riemann integration and power series.
Prerequisite: MATHS 250 and 254 or 255
1489
MATHS 332
: Real Analysis2021 Semester Two (1215)
A standard course for every student intending to advance in pure mathematics. It develops the foundational mathematics underlying calculus, it introduces a rigorous approach to continuous mathematics and fosters an understanding of the special thinking and arguments involved in this area. The main focus is analysis in one real variable with the topics including real fields, limits and continuity, Riemann integration and power series.
Prerequisite: MATHS 250, and MATHS 254 or 255 or an A or higher in MATHS 253 and 260
1490
MATHS 332
: Real Analysis2020 Semester Two (1205)
A standard course for every student intending to advance in pure mathematics. It develops the foundational mathematics underlying calculus, it introduces a rigorous approach to continuous mathematics and fosters an understanding of the special thinking and arguments involved in this area. The main focus is analysis in one real variable with the topics including real fields, limits and continuity, Riemann integration and power series.
Prerequisite: MATHS 250, and MATHS 254 or 255 or an A or higher in MATHS 253 and 260
1491
MATHS 333
: Analysis in Higher Dimensions2023 Semester One (1233)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332 or a B or higher in MATHS 254
1492
MATHS 333
: Analysis in Higher Dimensions2022 Semester One (1223)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332 or a B or higher in MATHS 254
1493
MATHS 333
: Analysis in Higher Dimensions2021 Semester One (1213)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332
1494
MATHS 333
: Analysis in Higher Dimensions2020 Semester One (1203)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332
1495
MATHS 334
: Algebraic Geometry2023 Semester Two (1235)
Algebraic geometry is a branch of mathematics studying zeros of polynomials. The fundamental objects in algebraic geometry are algebraic varieties i.e., solution sets of systems of polynomial equations.
Prerequisite: MATHS 332, and at least one of MATHS 320, 328 and Departmental approval
Restriction: MATHS 734
Restriction: MATHS 734
1496
MATHS 334
: Algebraic Geometry2021 Semester Two (1215)
Algebraic geometry is a branch of mathematics studying zeros of polynomials. The fundamental objects in algebraic geometry are algebraic varieties i.e., solution sets of systems of polynomial equations.
Prerequisite: MATHS 332, and at least one of MATHS 320, 328 and Departmental approval
Restriction: MATHS 734
Restriction: MATHS 734
1497
MATHS 340
: Real and Complex Calculus2023 Semester Two (1235)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250
1498
MATHS 340
: Real and Complex Calculus2022 Semester Two (1225)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250
1499
MATHS 340
: Real and Complex Calculus2021 Semester Two (1215)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250
1500
MATHS 340
: Real and Complex Calculus2020 Semester Two (1205)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118