# Search Course Outline

### Showing 25 course outlines from 2938 matches

1501

#### MATHS 341

: Complex Analysis
2023 Semester One (1233)
Functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
1502

#### MATHS 341

: Complex Analysis
2021 Semester One (1213)
Functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
1503

#### MATHS 350

: Topology
2022 Semester Two (1225)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
1504

#### MATHS 350

: Topology
2020 Semester Two (1205)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
1505

#### MATHS 361

: Partial Differential Equations
2023 Semester One (1233)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250, 260
1506

#### MATHS 361

: Partial Differential Equations
2022 Semester One (1223)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250, 260
1507

#### MATHS 361

: Partial Differential Equations
2021 Semester One (1213)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250, 260
1508

#### MATHS 361

: Partial Differential Equations
2020 Semester One (1203)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250, 260
1509

#### MATHS 362

: Methods in Applied Mathematics
2023 Semester Two (1235)
Covers a selection of techniques including the calculus of variations, asymptotic methods and models based on conservation laws. These methods are fundamental in the analysis of traffic flow, shocks, fluid flow, as well as in control theory, and the course is recommended for students intending to advance in Applied Mathematics. Recommended preparation: MATHS 253, 361.
Subject: Mathematics
Prerequisite:MATHS 250, 260
1510

#### MATHS 362

: Methods in Applied Mathematics
2022 Semester Two (1225)
Covers a selection of techniques including the calculus of variations, asymptotic methods and models based on conservation laws. These methods are fundamental in the analysis of traffic flow, shocks, fluid flow, as well as in control theory, and the course is recommended for students intending to advance in Applied Mathematics. Recommended preparation: MATHS 253, 361.
Subject: Mathematics
Prerequisite:MATHS 250, 260
1511

#### MATHS 362

: Methods in Applied Mathematics
2021 Semester Two (1215)
Covers a selection of techniques including the calculus of variations, asymptotic methods and models based on conservation laws. These methods are fundamental in the analysis of traffic flow, shocks, fluid flow, as well as in control theory, and the course is recommended for students intending to advance in Applied Mathematics. Recommended preparation: MATHS 253, 361.
Subject: Mathematics
Prerequisite:MATHS 250, 260
1512

#### MATHS 362

: Methods in Applied Mathematics
2020 Semester Two (1205)
Covers a selection of techniques including the calculus of variations, asymptotic methods and models based on conservation laws. These methods are fundamental in the analysis of traffic flow, shocks, fluid flow, as well as in control theory, and the course is recommended for students intending to advance in Applied Mathematics. Recommended preparation: MATHS 253, 361.
Subject: Mathematics
Prerequisite:MATHS 250, 260
1513

#### MATHS 363

2023 Semester One (1233)
In real-world situations, the interesting and important variables are often not directly observable. To address this problem, mathematical models and quantities that are observable are usually employed to carry out inference on the variables of interest. This course is an introduction to fitting of models to (noisy) observational data and how to compute estimates for the interesting variables. Numerical methods for partial differential equations, which are commonly used as models for the observations, will also be covered.
Subject: Mathematics
Prerequisite: MATHS 260 and 270
1514

#### MATHS 363

2022 Semester One (1223)
In real-world situations, the interesting and important variables are often not directly observable. To address this problem, mathematical models and quantities that are observable are usually employed to carry out inference on the variables of interest. This course is an introduction to fitting of models to (noisy) observational data and how to compute estimates for the interesting variables. Numerical methods for partial differential equations, which are commonly used as models for the observations, will also be covered.
Subject: Mathematics
Prerequisite: MATHS 260 and 270
1515

#### MATHS 363

2021 Semester One (1213)
In real-world situations, the interesting and important variables are often not directly observable. To address this problem, mathematical models and quantities that are observable are usually employed to carry out inference on the variables of interest. This course is an introduction to fitting of models to (noisy) observational data and how to compute estimates for the interesting variables. Numerical methods for partial differential equations, which are commonly used as models for the observations, will also be covered.
Subject: Mathematics
Prerequisite: MATHS 260 and 270
1516

#### MATHS 363

2020 Semester One (1203)
In real-world situations, the interesting and important variables are often not directly observable. To address this problem, mathematical models and quantities that are observable are usually employed to carry out inference on the variables of interest. This course is an introduction to fitting of models to (noisy) observational data and how to compute estimates for the interesting variables. Numerical methods for partial differential equations, which are commonly used as models for the observations, will also be covered.
Subject: Mathematics
Prerequisite: MATHS 260 and 270
1517

#### MATHS 399

: Capstone: Mathematics
2023 Semester Two (1235)
An exploration of the role of mathematics in society and culture, and the activities performed by mathematicians as teachers, critics, and innovators. Students will develop their skills in communication, critical thinking, teaching, and creative problem solving.
Subject: Mathematics
Prerequisite: MATHS 250 and 30 points at Stage III in Mathematics
1518

#### MATHS 399

: Capstone: Mathematics
2023 Semester One (1233)
An exploration of the role of mathematics in society and culture, and the activities performed by mathematicians as teachers, critics, and innovators. Students will develop their skills in communication, critical thinking, teaching, and creative problem solving.
Subject: Mathematics
Prerequisite: MATHS 250 and 30 points at Stage III in Mathematics
1519

#### MATHS 399

: Capstone: Mathematics
2022 Semester Two (1225)
An exploration of the role of mathematics in society and culture, and the activities performed by mathematicians as teachers, critics, and innovators. Students will develop their skills in communication, critical thinking, teaching, and creative problem solving.
Subject: Mathematics
Prerequisite: MATHS 250 and 30 points at Stage III in Mathematics
1520

#### MATHS 399

: Capstone: Mathematics
2022 Semester One (1223)
An exploration of the role of mathematics in society and culture, and the activities performed by mathematicians as teachers, critics, and innovators. Students will develop their skills in communication, critical thinking, teaching, and creative problem solving.
Subject: Mathematics
Prerequisite: MATHS 250 and 30 points at Stage III in Mathematics
1521

#### MATHS 399

: Capstone: Mathematics
2021 Semester Two (1215)
An exploration of the role of mathematics in society and culture, and the activities performed by mathematicians as teachers, critics, and innovators. Students will develop their skills in communication, critical thinking, teaching, and creative problem solving.
Subject: Mathematics
Prerequisite: MATHS 250 and 30 points at Stage III in Mathematics
1522

#### MATHS 399

: Capstone: Mathematics
2021 Semester One (1213)
An exploration of the role of mathematics in society and culture, and the activities performed by mathematicians as teachers, critics, and innovators. Students will develop their skills in communication, critical thinking, teaching, and creative problem solving.
Subject: Mathematics
Prerequisite: MATHS 250 and 30 points at Stage III in Mathematics
1523

#### MATHS 399

: Capstone: Mathematics
2020 Semester Two (1205)
An exploration of the role of mathematics in society and culture, and the activities performed by mathematicians as teachers, critics, and innovators. Students will develop their skills in communication, critical thinking, teaching, and creative problem solving.
Subject: Mathematics
Prerequisite: MATHS 250 and 30 points at Stage III in Mathematics
1524

#### MATHS 701

: Introduction to Research in Mathematics Education
2022 Semester Two (1225)
What is Mathematics Education research, and how can it inform practice? This course introduces a range of skills and methods for conducting and critically consuming research in mathematics education. Students will explore issues and techniques in Mathematics Education research as they design their own research studies to inform their teaching and learning practice.
Subject: Mathematics
Prerequisite: MATHS 302 or significant teaching experience or department approval
1525

#### MATHS 702

: Mathematical Processes in the Curriculum
2023 Semester Two (1235)
Historically, mathematics curricula have emphasised the what of mathematics (content), at the expense of considering the how. This course uses hands-on experiences and research literature to explore how to teach, learn and do mathematics through processes such as communication, modelling, problem solving, and proving.
Subject: Mathematics
No pre-requisites or restrictions