# Search Course Outline

### Showing 25 course outlines from 3703 matches

2076

#### PHYSICS 331

: Classical Mechanics and Electrodynamics2022 Semester One (1223)

Advanced topics in classical mechanics and electromagnetism, including variational and least action principles in mechanics, the physical basis of magnetism, and the four-vector treatment of special relativity and electromagnetism.

Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

Restriction: PHYSICS 315, 325

Restriction: PHYSICS 315, 325

2077

#### PHYSICS 331

: Classical Mechanics and Electrodynamics2020 Semester One (1203)

Advanced topics in classical mechanics and electromagnetism, including variational and least action principles in mechanics, the physical basis of magnetism, and the four-vector treatment of special relativity and electromagnetism.

Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

Restriction: PHYSICS 315, 325

Restriction: PHYSICS 315, 325

2078

#### PHYSICS 332

: Fluid Mechanics2024 Semester One (1243)

Surveys fluid mechanics using the Navier-Stokes equations, covering Newtonian and simple non-Newtonian fluids, and examples from soft condensed matter. Different flow regimes will be studied, from small-scale laminar flows to large-scale turbulent and potential flows, and flows in rotating frames of reference. Applications range from microfluidics to geophysical fluids. Numerical approaches and computational tools will be introduced.

Prerequisite: 15 points from PHYSICS 201, 231 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

2079

#### PHYSICS 332

: Fluid Mechanics2023 Semester One (1233)

Surveys fluid mechanics using the Navier-Stokes equations, covering Newtonian and simple non-Newtonian fluids, and examples from soft condensed matter. Different flow regimes will be studied, from small-scale laminar flows to large-scale turbulent and potential flows, and flows in rotating frames of reference. Applications range from microfluidics to geophysical fluids. Numerical approaches and computational tools will be introduced.

Prerequisite: 15 points from PHYSICS 201, 231 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

2080

#### PHYSICS 332

: Fluid Mechanics2022 Semester One (1223)

Surveys fluid mechanics using the Navier-Stokes equations, covering Newtonian and simple non-Newtonian fluids, and examples from soft condensed matter. Different flow regimes will be studied, from small-scale laminar flows to large-scale turbulent and potential flows, and flows in rotating frames of reference. Applications range from microfluidics to geophysical fluids. Numerical approaches and computational tools will be introduced.

Prerequisite: 15 points from PHYSICS 201, 231 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

2081

#### PHYSICS 333

: Lasers and Electromagnetic Waves2024 Semester Two (1245)

Surveys the basic principles of lasers and explains how the behaviour and propagation of light can be understood in terms of electromagnetic waves described by Maxwell’s equations. The theory and applications of several key optical components will be described, including lasers and resonators.

Prerequisite: 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

Restriction: PHYSICS 326

Restriction: PHYSICS 326

2082

#### PHYSICS 333

: Lasers and Electromagnetic Waves2023 Semester Two (1235)

Surveys the basic principles of lasers and explains how the behaviour and propagation of light can be understood in terms of electromagnetic waves described by Maxwell’s equations. The theory and applications of several key optical components will be described, including lasers and resonators.

Prerequisite: 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

Restriction: PHYSICS 326

Restriction: PHYSICS 326

2083

#### PHYSICS 333

: Lasers and Electromagnetic Waves2022 Semester Two (1225)

Surveys the basic principles of lasers and explains how the behaviour and propagation of light can be understood in terms of electromagnetic waves described by Maxwell’s equations. The theory and applications of several key optical components will be described, including lasers and resonators.

Prerequisite: 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

Restriction: PHYSICS 326

Restriction: PHYSICS 326

2084

#### PHYSICS 333

: Lasers and Electromagnetic Waves2021 Semester Two (1215)

Restriction: PHYSICS 326

2085

#### PHYSICS 333

: Lasers and Electromagnetic Waves2020 Semester Two (1205)

Restriction: PHYSICS 326

2086

#### PHYSICS 334

: Statistical Physics and Condensed Matter2024 Semester One (1243)

Covers statistical physics and condensed matter physics, and describes how macroscopic properties of physical systems arise from microscopic dynamics. Topics in statistical physics include temperature, the partition function and connections with classical thermodynamics. Topics in condensed matter physics include crystal structures, phonons, electronic band theory, and semiconductors.

Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 203, 251 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

Restriction: PHYSICS 315, 354

Restriction: PHYSICS 315, 354

2087

#### PHYSICS 334

: Statistical Physics and Condensed Matter2023 Semester One (1233)

Covers statistical physics and condensed matter physics, and describes how macroscopic properties of physical systems arise from microscopic dynamics. Topics in statistical physics include temperature, the partition function and connections with classical thermodynamics. Topics in condensed matter physics include crystal structures, phonons, electronic band theory, and semiconductors.

Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 203, 251 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

Restriction: PHYSICS 315, 354

Restriction: PHYSICS 315, 354

2088

#### PHYSICS 334

: Statistical Physics and Condensed Matter2022 Semester One (1223)

Covers statistical physics and condensed matter physics, and describes how macroscopic properties of physical systems arise from microscopic dynamics. Topics in statistical physics include temperature, the partition function and connections with classical thermodynamics. Topics in condensed matter physics include crystal structures, phonons, electronic band theory, and semiconductors.

Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 203, 251 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

Restriction: PHYSICS 315, 354

Restriction: PHYSICS 315, 354

2089

#### PHYSICS 335

: Quantum Mechanics2024 Semester Two (1245)

Develops non-relativistic quantum mechanics with applications to the physics of atoms and molecules and to quantum information theory. Topics include the Stern-Gerlach effect, spin-orbit coupling, Bell’s inequalities, interactions of atoms with light, and the interactions of identical particles.

Prerequisite: 15 points from PHYSICS 203, 251 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

Restriction: PHYSICS 350

Restriction: PHYSICS 350

2090

#### PHYSICS 335

: Quantum Mechanics2023 Semester Two (1235)

Develops non-relativistic quantum mechanics with applications to the physics of atoms and molecules and to quantum information theory. Topics include the Stern-Gerlach effect, spin-orbit coupling, Bell’s inequalities, interactions of atoms with light, and the interactions of identical particles.

Prerequisite: 15 points from PHYSICS 203, 251 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

Restriction: PHYSICS 350

Restriction: PHYSICS 350

2091

#### PHYSICS 335

: Quantum Mechanics2022 Semester Two (1225)

Develops non-relativistic quantum mechanics with applications to the physics of atoms and molecules and to quantum information theory. Topics include the Stern-Gerlach effect, spin-orbit coupling, Bell’s inequalities, interactions of atoms with light, and the interactions of identical particles.

Prerequisite: 15 points from PHYSICS 203, 251 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211

Restriction: PHYSICS 350

Restriction: PHYSICS 350

2092

#### PHYSICS 335

: Quantum Mechanics2021 Semester Two (1215)

Restriction: PHYSICS 350

2093

#### PHYSICS 335

: Quantum Mechanics2020 Semester Two (1205)

Restriction: PHYSICS 350

2094

#### PHYSICS 340

: Electronics and Signal Processing2024 Semester One (1243)

Electronics and digital signal processing with a strong emphasis on practical circuit design and data acquisition techniques. Topics will be selected from: linear circuit theory, analytical and numeric network analysis, feedback and oscillation, operational amplifier circuits, Fourier theory, sampling theory, digital filter design, and the fast Fourier transform.

Prerequisite: PHYSICS 240 or 244

Restriction: PHYSICS 341 Concurrent enrolment in PHYSICS 390 is recommended

Restriction: PHYSICS 341 Concurrent enrolment in PHYSICS 390 is recommended

2095

#### PHYSICS 340

: Electronics and Signal Processing2023 Semester One (1233)

Electronics and digital signal processing with a strong emphasis on practical circuit design and data acquisition techniques. Topics will be selected from: linear circuit theory, analytical and numeric network analysis, feedback and oscillation, operational amplifier circuits, Fourier theory, sampling theory, digital filter design, and the fast Fourier transform.

Prerequisite: 15 points from PHYSICS 240, 244 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Concurrent enrolment in PHYSICS 390 is recommended

Restriction: PHYSICS 341

Restriction: PHYSICS 341

2096

#### PHYSICS 340

: Electronics and Signal Processing2022 Semester One (1223)

Electronics and digital signal processing with a strong emphasis on practical circuit design and data acquisition techniques. Topics will be selected from: linear circuit theory, analytical and numeric network analysis, feedback and oscillation, operational amplifier circuits, Fourier theory, sampling theory, digital filter design, and the fast Fourier transform.

Prerequisite: 15 points from PHYSICS 240, 244 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Concurrent enrolment in PHYSICS 390 is recommended

Restriction: PHYSICS 341

Restriction: PHYSICS 341

2097

#### PHYSICS 340

: Electronics and Signal Processing2021 Semester One (1213)

Prerequisite: 15 points from PHYSICS 240, 244 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Concurrent enrolment in PHYSICS 390 is recommended

Restriction: PHYSICS 341

Restriction: PHYSICS 341

2098

#### PHYSICS 340

: Electronics and Signal Processing2020 Semester One (1203)

Restriction: PHYSICS 341

2099

#### PHYSICS 356

: Particle Physics and Astrophysics2024 Semester Two (1245)

Particle physics topics covered will include relativistic dynamics and application to fundamental particle interactions, the properties of strong, weak and electromagnetic interactions and the particle zoo. Astrophysics topics will include some of the following: the Big Bang, "concordance cosmology", redshifts, theories of dark matter, extra-solar planets, stellar evolution, supernovae, gravitational wave sources, nuclear astrophysics and the origin of the elements.

Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 203, 251 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Concurrent enrolment in PHYSICS 390 is recommended

Restriction: PHYSICS 355

Restriction: PHYSICS 355

2100

#### PHYSICS 356

: Particle Physics and Astrophysics2023 Semester Two (1235)

Particle physics topics covered will include relativistic dynamics and application to fundamental particle interactions, the properties of strong, weak and electromagnetic interactions and the particle zoo. Astrophysics topics will include some of the following: the Big Bang, "concordance cosmology", redshifts, theories of dark matter, extra-solar planets, stellar evolution, supernovae, gravitational wave sources, nuclear astrophysics and the origin of the elements.

Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 203, 251 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Concurrent enrolment in PHYSICS 390 is recommended

Restriction: PHYSICS 355

Restriction: PHYSICS 355

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149