New Online Course Catalogue will be available soon.
Search Course Outline
Showing 25 course outlines from 19204 matches
9501
MATHS 333
: Analysis in Higher Dimensions2025 Semester One (1253)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. This course examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332 or a B or higher in MATHS 254
9502
MATHS 333
: Analysis in Higher Dimensions2024 Semester One (1243)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. This course examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332 or a B or higher in MATHS 254
9503
MATHS 333
: Analysis in Higher Dimensions2023 Semester One (1233)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332 or a B or higher in MATHS 254
9504
MATHS 333
: Analysis in Higher Dimensions2022 Semester One (1223)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332 or a B or higher in MATHS 254
9505
MATHS 333
: Analysis in Higher Dimensions2021 Semester One (1213)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332
9506
MATHS 333
: Analysis in Higher Dimensions2020 Semester One (1203)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332
9507
MATHS 334
: Algebraic Geometry2023 Semester Two (1235)
Algebraic geometry is a branch of mathematics studying zeros of polynomials. The fundamental objects in algebraic geometry are algebraic varieties i.e., solution sets of systems of polynomial equations.
Prerequisite: MATHS 332, and at least one of MATHS 320, 328 and Departmental approval
Restriction: MATHS 734
Restriction: MATHS 734
9508
MATHS 334
: Algebraic Geometry2021 Semester Two (1215)
Algebraic geometry is a branch of mathematics studying zeros of polynomials. The fundamental objects in algebraic geometry are algebraic varieties i.e., solution sets of systems of polynomial equations.
Prerequisite: MATHS 332, and at least one of MATHS 320, 328 and Departmental approval
Restriction: MATHS 734
Restriction: MATHS 734
9509
MATHS 340
: Real and Complex Calculus2025 Semester Two (1255)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. This course extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253
Prerequisite: MATHS 250
9510
MATHS 340
: Real and Complex Calculus2024 Semester Two (1245)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. This course extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253
Prerequisite: MATHS 250
9511
MATHS 340
: Real and Complex Calculus2023 Semester Two (1235)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250
9512
MATHS 340
: Real and Complex Calculus2022 Semester Two (1225)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250
9513
MATHS 340
: Real and Complex Calculus2021 Semester Two (1215)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250
9514
MATHS 340
: Real and Complex Calculus2020 Semester Two (1205)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250
9515
MATHS 341
: Complex Analysis2025 Semester One (1253)
Explores functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three-line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
Restriction: MATHS 740
9516
MATHS 341
: Complex Analysis2023 Semester One (1233)
Functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
Restriction: MATHS 740
9517
MATHS 341
: Complex Analysis2021 Semester One (1213)
Functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
Restriction: MATHS 740
9518
MATHS 350
: Topology2024 Semester Two (1245)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
Restriction: MATHS 750
9519
MATHS 350
: Topology2022 Semester Two (1225)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
Restriction: MATHS 750
9520
MATHS 350
: Topology2020 Semester Two (1205)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
Restriction: MATHS 750
9521
MATHS 361
: Partial Differential Equations2025 Semester One (1253)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers linear PDEs, analytical methods for their solution and weak solutions. Recommended preparation: MATHS 253
Prerequisite: MATHS 250, 260
9522
MATHS 361
: Partial Differential Equations2024 Semester One (1243)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers linear PDEs, analytical methods for their solution and weak solutions. Recommended preparation: MATHS 253
Prerequisite: MATHS 250, 260
9523
MATHS 361
: Partial Differential Equations2023 Semester One (1233)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250, 260
9524
MATHS 361
: Partial Differential Equations2022 Semester One (1223)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250, 260
9525
MATHS 361
: Partial Differential Equations2021 Semester One (1213)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250, 260
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769