New Online Course Catalogue will be available soon.
Search Course Outline
Showing 25 course outlines from 4702 matches
2551
PHYSICS 309
: Special Study2024 Semester Two (1245)
Directed study on a topic or topics approved by the Academic Head or nominee.
No pre-requisites or restrictions
2552
PHYSICS 309
: Special Study2024 Semester One (1243)
Directed study on a topic or topics approved by the Academic Head or nominee.
No pre-requisites or restrictions
2553
PHYSICS 309
: Special Study2024 Summer School (1240)
Directed study on a topic or topics approved by the Academic Head or nominee.
No pre-requisites or restrictions
2554
PHYSICS 309
: Special Study2023 Semester Two (1235)
Directed study on a topic or topics approved by the Academic Head or nominee.
No pre-requisites or restrictions
2555
PHYSICS 309
: Special Study2023 Semester One (1233)
Directed study on a topic or topics approved by the Academic Head or nominee.
No pre-requisites or restrictions
2556
PHYSICS 309
: Special Study2023 Summer School (1230)
Directed study on a topic or topics approved by the Academic Head or nominee.
No pre-requisites or restrictions
2557
PHYSICS 309
: Special Study2022 Semester Two (1225)
Directed study on a topic or topics approved by the Academic Head or nominee.
No pre-requisites or restrictions
2558
PHYSICS 309
: Special Study2022 Semester One (1223)
Directed study on a topic or topics approved by the Academic Head or nominee.
No pre-requisites or restrictions
2559
PHYSICS 309
: Special Study2022 Summer School (1220)
Directed study on a topic or topics approved by the Academic Head or nominee.
No pre-requisites or restrictions
2560
PHYSICS 309
: Special Study2021 Semester Two (1215)
Directed study on a topic or topics approved by the Academic Head or nominee.
No pre-requisites or restrictions
2561
PHYSICS 331
: Classical Mechanics and Electrodynamics2025 Semester One (1253)
Advanced topics in classical mechanics and electromagnetism, including variational and least action principles in mechanics, the physical basis of magnetism, and the four-vector treatment of special relativity and electromagnetism.
Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Restriction: PHYSICS 315, 325
Restriction: PHYSICS 315, 325
2562
PHYSICS 331
: Classical Mechanics and Electrodynamics2024 Semester One (1243)
Advanced topics in classical mechanics and electromagnetism, including variational and least action principles in mechanics, the physical basis of magnetism, and the four-vector treatment of special relativity and electromagnetism.
Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Restriction: PHYSICS 315, 325
Restriction: PHYSICS 315, 325
2563
PHYSICS 331
: Classical Mechanics and Electrodynamics2023 Semester One (1233)
Advanced topics in classical mechanics and electromagnetism, including variational and least action principles in mechanics, the physical basis of magnetism, and the four-vector treatment of special relativity and electromagnetism.
Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Restriction: PHYSICS 315, 325
Restriction: PHYSICS 315, 325
2564
PHYSICS 331
: Classical Mechanics and Electrodynamics2022 Semester One (1223)
Advanced topics in classical mechanics and electromagnetism, including variational and least action principles in mechanics, the physical basis of magnetism, and the four-vector treatment of special relativity and electromagnetism.
Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Restriction: PHYSICS 315, 325
Restriction: PHYSICS 315, 325
2565
PHYSICS 331
: Classical Mechanics and Electrodynamics2020 Semester One (1203)
Advanced topics in classical mechanics and electromagnetism, including variational and least action principles in mechanics, the physical basis of magnetism, and the four-vector treatment of special relativity and electromagnetism.
Prerequisite: 15 points from PHYSICS 201, 231, 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Restriction: PHYSICS 315, 325
Restriction: PHYSICS 315, 325
2566
PHYSICS 332
: Fluid Mechanics2025 Semester One (1253)
Surveys fluid mechanics using the Navier-Stokes equations, covering Newtonian and simple non-Newtonian fluids, and examples from soft condensed matter. Different flow regimes will be studied, from small-scale laminar flows to large-scale turbulent and potential flows, and flows in rotating frames of reference. Applications range from microfluidics to geophysical fluids. Numerical approaches and computational tools will be introduced.
Prerequisite: 15 points from PHYSICS 201, 231 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
2567
PHYSICS 332
: Fluid Mechanics2024 Semester One (1243)
Surveys fluid mechanics using the Navier-Stokes equations, covering Newtonian and simple non-Newtonian fluids, and examples from soft condensed matter. Different flow regimes will be studied, from small-scale laminar flows to large-scale turbulent and potential flows, and flows in rotating frames of reference. Applications range from microfluidics to geophysical fluids. Numerical approaches and computational tools will be introduced.
Prerequisite: 15 points from PHYSICS 201, 231 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
2568
PHYSICS 332
: Fluid Mechanics2023 Semester One (1233)
Surveys fluid mechanics using the Navier-Stokes equations, covering Newtonian and simple non-Newtonian fluids, and examples from soft condensed matter. Different flow regimes will be studied, from small-scale laminar flows to large-scale turbulent and potential flows, and flows in rotating frames of reference. Applications range from microfluidics to geophysical fluids. Numerical approaches and computational tools will be introduced.
Prerequisite: 15 points from PHYSICS 201, 231 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
2569
PHYSICS 332
: Fluid Mechanics2022 Semester One (1223)
Surveys fluid mechanics using the Navier-Stokes equations, covering Newtonian and simple non-Newtonian fluids, and examples from soft condensed matter. Different flow regimes will be studied, from small-scale laminar flows to large-scale turbulent and potential flows, and flows in rotating frames of reference. Applications range from microfluidics to geophysical fluids. Numerical approaches and computational tools will be introduced.
Prerequisite: 15 points from PHYSICS 201, 231 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
2570
PHYSICS 333
: Lasers and Electromagnetic Waves2025 Semester Two (1255)
Surveys the basic principles of lasers and explains how the behaviour and propagation of light can be understood in terms of electromagnetic waves described by Maxwell’s equations. The theory and applications of several key optical components will be described, including lasers and resonators.
Prerequisite: 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Restriction: PHYSICS 326
Restriction: PHYSICS 326
2571
PHYSICS 333
: Lasers and Electromagnetic Waves2024 Semester Two (1245)
Surveys the basic principles of lasers and explains how the behaviour and propagation of light can be understood in terms of electromagnetic waves described by Maxwell’s equations. The theory and applications of several key optical components will be described, including lasers and resonators.
Prerequisite: 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Restriction: PHYSICS 326
Restriction: PHYSICS 326
2572
PHYSICS 333
: Lasers and Electromagnetic Waves2023 Semester Two (1235)
Surveys the basic principles of lasers and explains how the behaviour and propagation of light can be understood in terms of electromagnetic waves described by Maxwell’s equations. The theory and applications of several key optical components will be described, including lasers and resonators.
Prerequisite: 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Restriction: PHYSICS 326
Restriction: PHYSICS 326
2573
PHYSICS 333
: Lasers and Electromagnetic Waves2022 Semester Two (1225)
Surveys the basic principles of lasers and explains how the behaviour and propagation of light can be understood in terms of electromagnetic waves described by Maxwell’s equations. The theory and applications of several key optical components will be described, including lasers and resonators.
Prerequisite: 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Restriction: PHYSICS 326
Restriction: PHYSICS 326
2574
PHYSICS 333
: Lasers and Electromagnetic Waves2021 Semester Two (1215)
Surveys the basic principles of lasers and explains how the behaviour and propagation of light can be understood in terms of electromagnetic waves described by Maxwell’s equations. The theory and applications of several key optical components will be described, including lasers and resonators.
Prerequisite: 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Restriction: PHYSICS 326
Restriction: PHYSICS 326
2575
PHYSICS 333
: Lasers and Electromagnetic Waves2020 Semester Two (1205)
Surveys the basic principles of lasers and explains how the behaviour and propagation of light can be understood in terms of electromagnetic waves described by Maxwell’s equations. The theory and applications of several key optical components will be described, including lasers and resonators.
Prerequisite: 15 points from PHYSICS 202, 261 and 15 points from PHYSICS 211, MATHS 253, 260, ENGSCI 211
Restriction: PHYSICS 326
Restriction: PHYSICS 326
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189