Search Course Outline
Showing 25 course outlines from 4473 matches
326
BIOSCI 736
: Microbial Genomics and Metabolism2021 Semester Two (1215)
Cross-disciplinary issues involved in the understanding of microbial genome structure, gene regulation and metabolism. Includes: the genetic basis of microbial interactions and horizontal gene transfer, the effect of stress and mutation on microbial and viral evolution and modern approaches used to link gene sequence to biological function and phenotypes.
No pre-requisites or restrictions
327
BIOSCI 736
: Microbial Genomics and Metabolism2020 Semester Two (1205)
Cross-disciplinary issues involved in the understanding of microbial genome structure, gene regulation and metabolism. Includes: the genetic basis of microbial interactions and horizontal gene transfer, the effect of stress and mutation on microbial and viral evolution and modern approaches used to link gene sequence to biological function and phenotypes.
No pre-requisites or restrictions
328
BIOSCI 737
: High Resolution Imaging of Biological Molecules2025 Semester One (1253)
X-ray crystallography and electron microscopy are two of the principal techniques used by biologists to determine molecular structure. The theory and practice of X-ray crystallography and electron microscopy, including a laboratory component where 3D structure are determined from experimental data, are addressed. Accessible to students with a variety of backgrounds, including Biology, Bioengineering, Chemistry and Physics. This course complements CHEM 738 and BIOSCI 757.
No pre-requisites or restrictions
329
BIOSCI 737
: High Resolution Imaging of Biological Molecules2024 Semester One (1243)
X-ray crystallography and electron microscopy are two of the principal techniques used by biologists to determine molecular structure. The theory and practice of X-ray crystallography and electron microscopy, including a laboratory component where 3D structure are determined from experimental data, are addressed. Accessible to students with a variety of backgrounds, including Biology, Bioengineering, Chemistry and Physics. This course complements CHEM 738 and BIOSCI 757.
No pre-requisites or restrictions
330
BIOSCI 737
: High Resolution Imaging of Biological Molecules2023 Semester One (1233)
X-ray crystallography and electron microscopy are two of the principal techniques used by biologists to determine molecular structure. The theory and practice of X-ray crystallography and electron microscopy, including a laboratory component where 3D structure are determined from experimental data, are addressed. Accessible to students with a variety of backgrounds, including Biology, Bioengineering, Chemistry and Physics. This course complements CHEM 738 and BIOSCI 757.
No pre-requisites or restrictions
331
BIOSCI 737
: High Resolution Imaging of Biological Molecules2022 Semester One (1223)
X-ray crystallography and electron microscopy are two of the principal techniques used by biologists to determine molecular structure. The theory and practice of X-ray crystallography and electron microscopy, including a laboratory component where 3D structure are determined from experimental data, are addressed. Accessible to students with a variety of backgrounds, including Biology, Bioengineering, Chemistry and Physics. This course complements CHEM 738 and BIOSCI 757.
No pre-requisites or restrictions
332
BIOSCI 737
: High Resolution Imaging of Biological Molecules2021 Semester One (1213)
X-ray crystallography and electron microscopy are two of the principal techniques used by biologists to determine molecular structure. The theory and practice of X-ray crystallography and electron microscopy, including a laboratory component where 3D structure are determined from experimental data, are addressed. Accessible to students with a variety of backgrounds, including Biology, Bioengineering, Chemistry and Physics. This course complements CHEM 738 and BIOSCI 757.
No pre-requisites or restrictions
333
BIOSCI 738
: Advanced Biological Data Analysis2025 Semester One (1253)
Building on a strong foundation in quantitative biology, fundamental statistical methods and basic R programming, students will learn an array of advanced biostatistical methods for data analysis. Topics covered include: data wrangling, methods for the analysis of designed experiments, regression analysis, including mixed effect models, and the analysis of multivariate data, including advanced supervised and unsupervised learning techniques. Requires students to apply their knowledge across a myriad of complex biological datasets.
No pre-requisites or restrictions
334
BIOSCI 738
: Advanced Biological Data Analysis2024 Semester One (1243)
Building on a strong foundation in quantitative biology, fundamental statistical methods and basic R programming, students will learn an array of advanced biostatistical methods for data analysis. Topics covered include: data wrangling, methods for the analysis of designed experiments, regression analysis, including mixed effect models, and the analysis of multivariate data, including advanced supervised and unsupervised learning techniques. Requires students to apply their knowledge across a myriad of complex biological datasets.
No pre-requisites or restrictions
335
BIOSCI 738
: Advanced Biological Data Analysis2023 Semester One (1233)
Building on a strong foundation in quantitative biology, fundamental statistical methods and basic R programming, students will learn an array of advanced biostatistical methods for data analysis. Topics covered include: data wrangling, methods for the analysis of designed experiments, regression analysis, including mixed effect models, and the analysis of multivariate data, including advanced supervised and unsupervised learning techniques. Requires students to apply their knowledge across a myriad of complex biological datasets.
No pre-requisites or restrictions
336
BIOSCI 738
: Advanced Biological Data Analysis2022 Semester One (1223)
Building on a strong foundation in quantitative biology, fundamental statistical methods and basic R programming, students will learn an array of advanced biostatistical methods for data analysis. Topics covered include: data wrangling, methods for the analysis of designed experiments, regression analysis, including mixed effect models, and the analysis of multivariate data, including advanced supervised and unsupervised learning techniques. Requires students to apply their knowledge across a myriad of complex biological datasets.
No pre-requisites or restrictions
337
BIOSCI 738
: Advanced Biological Data Analysis2021 Semester One (1213)
Design and analysis of experiments for both field and bench scientists. Methods for the analysis of designed experiments, including analysis of variance with fixed, random and mixed effects; also, regression analysis and analysis of covariance. Methods for the analysis of multivariate datasets such as cluster analysis, principal components analysis, multidimensional scaling, and randomisation methods. There will be a practical component to this course involving the use of appropriate statistical software.
No pre-requisites or restrictions
338
BIOSCI 738
: Advanced Biological Data Analysis2020 Semester One (1203)
Design and analysis of experiments for both field and bench scientists. Methods for the analysis of designed experiments, including analysis of variance with fixed, random and mixed effects; also, regression analysis and analysis of covariance. Methods for the analysis of multivariate datasets such as cluster analysis, principal components analysis, multidimensional scaling, and randomisation methods. There will be a practical component to this course involving the use of appropriate statistical software.
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, or equivalent
339
BIOSCI 739
: Dialogues in Biology2025 Semester One (1253)
Social, ethical and other philosophical issues in the life sciences will be debated and explored. Topics may include: animal and environmental ethics, conservation and biodiversity, the history and philosophy of science, ethical and commercial issues underpinning science, scientific publishing and advocacy, medical and agricultural biotechnology.
No pre-requisites or restrictions
340
BIOSCI 739
: Dialogues in Biology2024 Semester One (1243)
Social, ethical and other philosophical issues in the life sciences will be debated and explored. Topics may include: animal and environmental ethics, conservation and biodiversity, the history and philosophy of science, ethical and commercial issues underpinning science, scientific publishing and advocacy, medical and agricultural biotechnology.
No pre-requisites or restrictions
341
BIOSCI 739
: Dialogues in Biology2023 Semester One (1233)
Social, ethical and other philosophical issues in the life sciences will be debated and explored. Topics may include: animal and environmental ethics, conservation and biodiversity, the history and philosophy of science, ethical and commercial issues underpinning science, scientific publishing and advocacy, medical and agricultural biotechnology.
No pre-requisites or restrictions
342
BIOSCI 739
: Dialogues in Biology2022 Semester One (1223)
Social, ethical and other philosophical issues in the life sciences will be debated and explored. Topics may include: animal and environmental ethics, conservation and biodiversity, the history and philosophy of science, ethical and commercial issues underpinning science, scientific publishing and advocacy, medical and agricultural biotechnology.
No pre-requisites or restrictions
343
BIOSCI 739
: Dialogues in Biology2021 Semester One (1213)
Social, ethical and other philosophical issues in the life sciences will be debated and explored. Topics may include: animal and environmental ethics, conservation and biodiversity, the history and philosophy of science, ethical and commercial issues underpinning science, scientific publishing and advocacy, medical and agricultural biotechnology.
No pre-requisites or restrictions
344
BIOSCI 741
: Applied Microbiology and Biotechnology2025 Semester One (1253)
Explores recent advances in microbial biotechnology across the environmental, industrial and medical sectors, highlighting the diversity and complexity of applications. Features of experimental design and data analysis will be discussed. A sound understanding of BIOSCI 348 or equivalent is assumed.
No pre-requisites or restrictions
345
BIOSCI 741
: Applied Microbiology and Biotechnology2024 Semester One (1243)
Explores recent advances in microbial biotechnology across the environmental, industrial and medical sectors, highlighting the diversity and complexity of applications. Features of experimental design and data analysis will be discussed. A sound understanding of BIOSCI 348 or equivalent is assumed.
No pre-requisites or restrictions
346
BIOSCI 741
: Applied Microbiology and Biotechnology2023 Semester One (1233)
Explores recent advances in microbial biotechnology across the environmental, industrial and medical sectors, highlighting the diversity and complexity of applications. Features of experimental design and data analysis will be discussed. A sound understanding of BIOSCI 348 or equivalent is assumed.
No pre-requisites or restrictions
347
BIOSCI 741
: Applied Microbiology and Biotechnology2022 Semester One (1223)
Historical overview of the development of industrial microbiology. Diversity and complexity of applications. Biodiversity of fermentations. Microbial metabolism and the assimilation of carbon, nitrogen, and sulphur. Interconnections between catabolic and biosynthetic pathways. Metabolic considerations in continuous culture. Selection, isolation and construction of useful organisms. Manipulation of growth conditions to optimise process yield. Contemporary examples of industrial processes using microbes. A sound understanding of BIOSCI 348 or equivalent is assumed.
No pre-requisites or restrictions
348
BIOSCI 746
: The Molecular Machinery of The Cell2025 Semester Two (1255)
The experimental investigation and modelling of protein behaviour at the molecular level, in order to explain cellular biology and facilitate protein engineering. Topics addressed may include binding, transport, catalysis, chemical modification, and dynamics. A sound understanding of BIOSCI 350 or equivalent is assumed.
No pre-requisites or restrictions
349
BIOSCI 746
: The Molecular Machinery of The Cell2023 Semester Two (1235)
The experimental investigation and modelling of protein behaviour at the molecular level, in order to explain cellular biology and facilitate protein engineering. Topics addressed may include binding, transport, catalysis, chemical modification, and dynamics. A sound understanding of BIOSCI 350 or equivalent is assumed.
No pre-requisites or restrictions
350
BIOSCI 746
: The Molecular Machinery of The Cell2022 Semester Two (1225)
The experimental investigation and modelling of protein behaviour at the molecular level, in order to explain cellular biology and facilitate protein engineering. Topics addressed may include binding, transport, catalysis, chemical modification, and dynamics. A sound understanding of BIOSCI 350 or equivalent is assumed.
No pre-requisites or restrictions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179