Search Course Outline

Showing 25 course outlines from 4499 matches

3476

STATS 730

: Statistical Inference
2022 Semester Two (1225)
Fundamentals of likelihood-based inference, including sufficiency, conditioning, likelihood principle, statistical paradoxes. Theory and practice of maximum likelihood. Examples covered may include survival analysis, GLM's, nonlinear models, random effects and empirical Bayes models, and quasi-likelihood.
Subject: Statistics
Prerequisite: STATS 310 or 732
3477

STATS 730

: Statistical Inference
2021 Semester Two (1215)
Fundamentals of likelihood-based inference, including sufficiency, conditioning, likelihood principle, statistical paradoxes. Theory and practice of maximum likelihood. Examples covered may include survival analysis, GLM's, nonlinear models, random effects and empirical Bayes models, and quasi-likelihood.
Subject: Statistics
Prerequisite: STATS 310 or 732
3478

STATS 730

: Statistical Inference
2020 Semester Two (1205)
Fundamentals of likelihood-based inference, including sufficiency, conditioning, likelihood principle, statistical paradoxes. Theory and practice of maximum likelihood. Examples covered may include survival analysis, GLM's, nonlinear models, random effects and empirical Bayes models, and quasi-likelihood.
Subject: Statistics
Prerequisite: STATS 310 or 732
3479

STATS 731

: Bayesian Inference
2025 Semester Two (1255)
A course in practical Bayesian statistical inference covering: the Bayesian approach specification of prior distributions, decision-theoretic foundations, the likelihood principle, asymptotic approximations, simulation methods, Markov Chain Monte Carlo methods, the BUGS and CODA software, model assessment, hierarchical models, application in data analysis.
Subject: Statistics
Prerequisite: STATS 331 and 15 points from STATS 210, 225
3480

STATS 731

: Bayesian Inference
2024 Semester Two (1245)
A course in practical Bayesian statistical inference covering: the Bayesian approach specification of prior distributions, decision-theoretic foundations, the likelihood principle, asymptotic approximations, simulation methods, Markov Chain Monte Carlo methods, the BUGS and CODA software, model assessment, hierarchical models, application in data analysis.
Subject: Statistics
Prerequisite: STATS 331 and 15 points from STATS 210, 225
3481

STATS 731

: Bayesian Inference
2023 Semester Two (1235)
A course in practical Bayesian statistical inference covering: the Bayesian approach specification of prior distributions, decision-theoretic foundations, the likelihood principle, asymptotic approximations, simulation methods, Markov Chain Monte Carlo methods, the BUGS and CODA software, model assessment, hierarchical models, application in data analysis.
Subject: Statistics
Prerequisite: STATS 331 and 15 points from STATS 210, 225
3482

STATS 731

: Bayesian Inference
2022 Semester Two (1225)
A course in practical Bayesian statistical inference covering: the Bayesian approach specification of prior distributions, decision-theoretic foundations, the likelihood principle, asymptotic approximations, simulation methods, Markov Chain Monte Carlo methods, the BUGS and CODA software, model assessment, hierarchical models, application in data analysis.
Subject: Statistics
Prerequisite: STATS 210 or 225
3483

STATS 731

: Bayesian Inference
2021 Semester Two (1215)
A course in practical Bayesian statistical inference covering: the Bayesian approach specification of prior distributions, decision-theoretic foundations, the likelihood principle, asymptotic approximations, simulation methods, Markov Chain Monte Carlo methods, the BUGS and CODA software, model assessment, hierarchical models, application in data analysis.
Subject: Statistics
Prerequisite: STATS 210 or 225
3484

STATS 731

: Bayesian Inference
2020 Semester One (1203)
A course in practical Bayesian statistical inference covering: the Bayesian approach specification of prior distributions, decision-theoretic foundations, the likelihood principle, asymptotic approximations, simulation methods, Markov Chain Monte Carlo methods, the BUGS and CODA software, model assessment, hierarchical models, application in data analysis.
Subject: Statistics
Prerequisite: STATS 210 or 225
3485

STATS 732

: Foundations of Statistical Inference
2025 Semester One (1253)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310
3486

STATS 732

: Foundations of Statistical Inference
2024 Semester One (1243)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310
3487

STATS 732

: Foundations of Statistical Inference
2023 Semester One (1233)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310
3488

STATS 732

: Foundations of Statistical Inference
2022 Semester One (1223)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310
3489

STATS 732

: Foundations of Statistical Inference
2021 Semester One (1213)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310
3490

STATS 732

: Foundations of Statistical Inference
2020 Semester One (1203)
Fundamentals of statistical inference including estimation, hypothesis testing, likelihood methods, multivariate distributions, joint, marginal, and conditional distributions, vector random variables, and an introduction to decision theory and Bayesian inference.
Subject: Statistics
Prerequisite: STATS 210 or 225, and 15 points from MATHS 208, 250
Restriction: STATS 310
3491

STATS 740

: Sample Surveys
2024 Semester One (1243)
The design, management and analysis of sample surveys. Topics such as the following are studied. Types of Survey. Revision of statistical aspects of sampling. Preparing surveys. Research entry: problem selection, sponsorship and collaboration. Research design: methodology and data collection; Issues of sample design and sample selection. Conducting surveys: Questionnaires and questions; Non-sampling issues; Project management; Maintaining data quality. Concluding surveys: Analysis; Dissemination.
Subject: Statistics
Prerequisite: 15 points from STATS 240, 330, 340, and 15 points from Stage II Mathematics
3492

STATS 740

: Sample Surveys
2022 Semester Two (1225)
The design, management and analysis of sample surveys. Topics such as the following are studied. Types of Survey. Revision of statistical aspects of sampling. Preparing surveys. Research entry: problem selection, sponsorship and collaboration. Research design: methodology and data collection; Issues of sample design and sample selection. Conducting surveys: Questionnaires and questions; Non-sampling issues; Project management; Maintaining data quality. Concluding surveys: Analysis; Dissemination.
Subject: Statistics
Prerequisite: 15 points from STATS 240, 330, 340, and 15 points from Stage II Mathematics
3493

STATS 740

: Sample Surveys
2021 Semester Two (1215)
The design, management and analysis of sample surveys. Topics such as the following are studied. Types of Survey. Revision of statistical aspects of sampling. Preparing surveys. Research entry: problem selection, sponsorship and collaboration. Research design: methodology and data collection; Issues of sample design and sample selection. Conducting surveys: Questionnaires and questions; Non-sampling issues; Project management; Maintaining data quality. Concluding surveys: Analysis; Dissemination.
Subject: Statistics
Prerequisite: 15 points from STATS 240, 330, 340, and 15 points from Stage II Mathematics
3494

STATS 740

: Sample Surveys
2020 Semester Two (1205)
The design, management and analysis of sample surveys. Topics such as the following are studied. Types of Survey. Revision of statistical aspects of sampling. Preparing surveys. Research entry: problem selection, sponsorship and collaboration. Research design: methodology and data collection; Issues of sample design and sample selection. Conducting surveys: Questionnaires and questions; Non-sampling issues; Project management; Maintaining data quality. Concluding surveys: Analysis; Dissemination.
Subject: Statistics
Prerequisite: 15 points from STATS 340, 741 and 15 points from STATS 310, 732
3495

STATS 747

: Statistical Methods in Marketing
2021 Semester Two (1215)
Stochastic models of brand choice, applications of General Linear Models in marketing, conjoint analysis, advertising media models and marketing response models.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, 210, 707
3496

STATS 747

: Statistical Methods in Marketing
2020 Semester Two (1205)
Stochastic models of brand choice, applications of General Linear Models in marketing, conjoint analysis, advertising media models and marketing response models.
Subject: Statistics
No pre-requisites or restrictions
3497

STATS 760

: A Survey of Modern Applied Statistics
2020 Semester One (1203)
A survey of techniques from modern applied statistics. Topics covered will be linear, non-linear and generalised linear models, modern regression including CART and neural networks, mixed models, survival analysis, time series and spatial statistics.
Subject: Statistics
Prerequisite: STATS 310, 330
3498

STATS 762

: Regression for Data Science
2025 Semester One (1253)
Application of the generalised linear model to fit data arising from a wide range of sources, including multiple linear regression models, Poisson regression, and logistic regression models. The graphical exploration of data. Model building for prediction and for causal inference. Other regression models such as quantile regression. A basic understanding of vector spaces, matrix algebra and calculus will be assumed.
Subject: Statistics
Prerequisite: 15 points from STATS 210, 225, 707, and 15 points from ENGSCI 314, STATS 201, 207, 208
Restriction: STATS 330
3499

STATS 762

: Regression for Data Science
2024 Semester One (1243)
Application of the generalised linear model to fit data arising from a wide range of sources, including multiple linear regression models, Poisson regression, and logistic regression models. The graphical exploration of data. Model building for prediction and for causal inference. Other regression models such as quantile regression. A basic understanding of vector spaces, matrix algebra and calculus will be assumed.
Subject: Statistics
Prerequisite: 15 points from STATS 210, 225, 707, and 15 points from ENGSCI 314, STATS 201, 207, 208
Restriction: STATS 330
3500

STATS 762

: Regression for Data Science
2023 Semester One (1233)
Application of the generalised linear model to fit data arising from a wide range of sources, including multiple linear regression models, Poisson regression, and logistic regression models. The graphical exploration of data. Model building for prediction and for causal inference. Other regression models such as quantile regression. A basic understanding of vector spaces, matrix algebra and calculus will be assumed.
Subject: Statistics
Prerequisite: STATS 707 or 210 or 225, and 15 points from STATS 201, 207, 208 or a B+ or higher in BIOSCI 209
Restriction: STATS 330