Search Course Outline

Showing 25 course outlines from 4473 matches

3476

STATS 763

: Advanced Regression Methodology
2020 Semester One (1203)
Generalised linear models, generalised additive models, survival analysis. Smoothing and semiparametric regression. Marginal and conditional models for correlated data. Model selection for prediction and for control of confounding. Model criticism and testing. Computational methods for model fitting, including Bayesian approaches.
Subject: Statistics
No pre-requisites or restrictions
3477

STATS 765

: Statistical Learning for Data Science
2025 Semester Two (1255)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208 and 15 points from STATS 210, 225, 707 Corequisite: May be taken with STATS 707
Restriction: STATS 369
3478

STATS 765

: Statistical Learning for Data Science
2024 Semester One (1243)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208 and 15 points from STATS 210, 225, 707 Corequisite: May be taken with STATS 707
Restriction: STATS 369
3479

STATS 765

: Statistical Learning for Data Science
2023 Semester One (1233)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Subject: Statistics
Prerequisite: 15 points from STATS 201 or 207 or 208 and 15 points from STATS 210 or 225, or STATS 707 Corequisite: May be taken with STATS 707
Restriction: STATS 369
3480

STATS 765

: Statistical Learning for Data Science
2022 Semester One (1223)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Subject: Statistics
Prerequisite: 15 points from STATS 201 or 207 or 208 and 15 points from STATS 210 or 225, or STATS 707 Corequisite: May be taken with STATS 707
Restriction: STATS 369
3481

STATS 765

: Statistical Learning for Data Science
2021 Semester One (1213)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Subject: Statistics
Prerequisite: 15 points from STATS 201 or 207 or 208 and 15 points from STATS 210 or 225, or STATS 707 Corequisite: May be taken with STATS 707
Restriction: STATS 369
3482

STATS 765

: Statistical Learning for Data Science
2020 Semester One (1203)
Concepts of modern predictive modelling and machine learning such as loss functions, overfitting, generalisation, regularisation, sparsity. Techniques including regression, recursive partitioning, boosting, neural networks. Application to real data sets from a variety of sources, including data quality assessment, data preparation and reporting.
Subject: Statistics
Prerequisite: 15 points from STATS 201 or 207 or 208 and 15 points from STATS 210 or 225, or STATS 707 Corequisite: May be taken with STATS 707
Restriction: STATS 369
3483

STATS 766

: Multivariate Analysis
2023 Semester Two (1235)
A selection of topics from multivariate analysis, including: advanced methods of data display (e.g., Correspondence and Canonical Correspondence Analysis, Biplots, and PREFMAP) and an introduction to classification methods (e.g., various types of Discriminant Function Analysis).
Subject: Statistics
Prerequisite: STATS 310 or 732
3484

STATS 766

: Multivariate Analysis
2022 Semester Two (1225)
A selection of topics from multivariate analysis, including: advanced methods of data display (e.g., Correspondence and Canonical Correspondence Analysis, Biplots, and PREFMAP) and an introduction to classification methods (e.g., various types of Discriminant Function Analysis).
Subject: Statistics
Prerequisite: STATS 302 or 767
3485

STATS 767

: Foundations of Applied Multivariate Analysis
2025 Semester One (1253)
Fundamentals of exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208, 707
Restriction: STATS 302
3486

STATS 767

: Foundations of Applied Multivariate Analysis
2024 Semester One (1243)
Fundamentals of exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208, 707
Restriction: STATS 302
3487

STATS 767

: Foundations of Applied Multivariate Analysis
2023 Semester One (1233)
Fundamentals of exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, 707
Restriction: STATS 302
3488

STATS 767

: Foundations of Applied Multivariate Analysis
2022 Semester One (1223)
Fundamentals of exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, 707
Restriction: STATS 302
3489

STATS 767

: Foundations of Applied Multivariate Analysis
2021 Semester One (1213)
Fundamentals of exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, 707
Restriction: STATS 302
3490

STATS 767

: Foundations of Applied Multivariate Analysis
2020 Semester One (1203)
Fundamentals of exploratory analysis of multivariate data, with emphasis on the use of statistical software and reporting of results. Topics covered include: techniques for data display, dimension reduction and ordination, cluster analysis, multivariate ANOVA and associated methods.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208
Restriction: STATS 302
3491

STATS 768

: Longitudinal Data Analysis
2025 Semester Two (1255)
Exploration and regression modelling of longitudinal and clustered data, especially in the health sciences: mixed models, marginal models, dropout, causal inference.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208, 210, 707
3492

STATS 768

: Longitudinal Data Analysis
2024 Semester Two (1245)
Exploration and regression modelling of longitudinal and clustered data, especially in the health sciences: mixed models, marginal models, dropout, causal inference.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 314, STATS 201, 207, 208, 210, 707
3493

STATS 768

: Longitudinal Data Analysis
2023 Semester Two (1235)
Exploration and regression modelling of longitudinal and clustered data, especially in the health sciences: mixed models, marginal models, dropout, causal inference.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, 210, 707
3494

STATS 768

: Longitudinal Data Analysis
2021 Semester Two (1215)
Exploration and regression modelling of longitudinal and clustered data, especially in the health sciences: mixed models, marginal models, dropout, causal inference.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, STATS 201, 207, 208, 210, 707
3495

STATS 768

: Longitudinal Data Analysis
2020 Semester Two (1205)
Exploration and regression modelling of longitudinal and clustered data, especially in the health sciences: mixed models, marginal models, dropout, causal inference.
Subject: Statistics
No pre-requisites or restrictions
3496

STATS 769

: Advanced Data Science Practice
2025 Semester Two (1255)
Databases, SQL, scripting, distributed computation, other data technologies.
Subject: Statistics
Prerequisite: 15 points from STATS 220, 369, 380 and 15 points from ENGSCI 314, STATS 201, 207, 208, 707
3497

STATS 769

: Advanced Data Science Practice
2024 Semester Two (1245)
Databases, SQL, scripting, distributed computation, other data technologies.
Subject: Statistics
Prerequisite: 15 points from STATS 220, 369, 380 and 15 points from ENGSCI 314, STATS 201, 207, 208, 707
3498

STATS 769

: Advanced Data Science Practice
2023 Semester Two (1235)
Databases, SQL, scripting, distributed computation, other data technologies.
Subject: Statistics
Prerequisite: 15 points from STATS 220, 369, 380 and 15 points from BIOSCI 209, STATS 201, 207, 208, 707
3499

STATS 769

: Advanced Data Science Practice
2022 Semester Two (1225)
Databases, SQL, scripting, distributed computation, other data technologies.
Subject: Statistics
Prerequisite: 15 points from STATS 220, 369, 380 and 15 points from BIOSCI 209, STATS 201, 207, 208, 707
3500

STATS 769

: Advanced Data Science Practice
2021 Semester Two (1215)
Databases, SQL, scripting, distributed computation, other data technologies.
Subject: Statistics
Prerequisite: 15 points from STATS 220, 369, 380 and 15 points from BIOSCI 209, STATS 201, 207, 208, 707