Search Course Outline

Showing 25 course outlines from 4473 matches

2251

MATHS 340

: Real and Complex Calculus
2023 Semester Two (1235)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250
2252

MATHS 340

: Real and Complex Calculus
2022 Semester Two (1225)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250
2253

MATHS 340

: Real and Complex Calculus
2021 Semester Two (1215)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250
2254

MATHS 340

: Real and Complex Calculus
2020 Semester Two (1205)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250
2255

MATHS 341

: Complex Analysis
2025 Semester One (1253)
Explores functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three-line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
2256

MATHS 341

: Complex Analysis
2023 Semester One (1233)
Functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
2257

MATHS 341

: Complex Analysis
2021 Semester One (1213)
Functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
2258

MATHS 350

: Topology
2024 Semester Two (1245)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
2259

MATHS 350

: Topology
2022 Semester Two (1225)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
2260

MATHS 350

: Topology
2020 Semester Two (1205)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
2261

MATHS 361

: Partial Differential Equations
2025 Semester One (1253)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers linear PDEs, analytical methods for their solution and weak solutions. Recommended preparation: MATHS 253
Subject: Mathematics
Prerequisite: MATHS 250, 260
2262

MATHS 361

: Partial Differential Equations
2024 Semester One (1243)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers linear PDEs, analytical methods for their solution and weak solutions. Recommended preparation: MATHS 253
Subject: Mathematics
Prerequisite: MATHS 250, 260
2263

MATHS 361

: Partial Differential Equations
2023 Semester One (1233)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250, 260
2264

MATHS 361

: Partial Differential Equations
2022 Semester One (1223)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250, 260
2265

MATHS 361

: Partial Differential Equations
2021 Semester One (1213)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250, 260
2266

MATHS 361

: Partial Differential Equations
2020 Semester One (1203)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers: linear PDEs and analytical methods for their solution, weak solutions. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250, 260
2267

MATHS 362

: Methods in Applied Mathematics
2025 Semester Two (1255)
Covers a selection of techniques to analyse differential equations including the method of characteristics and asymptotic analysis. These methods are fundamental in the analysis of traffic flows, shocks and fluid flows. Introduces foundational concepts to quantify uncertainty in parameters of differential equations and is recommended for students intending to advance in Applied Mathematics.  Recommended preparation: MATHS 253, 361
Subject: Mathematics
Prerequisite: MATHS 250, 260
2268

MATHS 362

: Methods in Applied Mathematics
2024 Semester Two (1245)
Covers a selection of techniques to analyse differential equations including the method of characteristics and asymptotic analysis. These methods are fundamental in the analysis of traffic flows, shocks and fluid flows. Introduces foundational concepts to quantify uncertainty in parameters of differential equations and is recommended for students intending to advance in Applied Mathematics.  Recommended preparation: MATHS 253, 361
Subject: Mathematics
Prerequisite: MATHS 250, 260
2269

MATHS 362

: Methods in Applied Mathematics
2023 Semester Two (1235)
Covers a selection of techniques including the calculus of variations, asymptotic methods and models based on conservation laws. These methods are fundamental in the analysis of traffic flow, shocks, fluid flow, as well as in control theory, and the course is recommended for students intending to advance in Applied Mathematics. Recommended preparation: MATHS 253, 361.
Subject: Mathematics
Prerequisite:MATHS 250, 260
2270

MATHS 362

: Methods in Applied Mathematics
2022 Semester Two (1225)
Covers a selection of techniques including the calculus of variations, asymptotic methods and models based on conservation laws. These methods are fundamental in the analysis of traffic flow, shocks, fluid flow, as well as in control theory, and the course is recommended for students intending to advance in Applied Mathematics. Recommended preparation: MATHS 253, 361.
Subject: Mathematics
Prerequisite:MATHS 250, 260
2271

MATHS 362

: Methods in Applied Mathematics
2021 Semester Two (1215)
Covers a selection of techniques including the calculus of variations, asymptotic methods and models based on conservation laws. These methods are fundamental in the analysis of traffic flow, shocks, fluid flow, as well as in control theory, and the course is recommended for students intending to advance in Applied Mathematics. Recommended preparation: MATHS 253, 361.
Subject: Mathematics
Prerequisite:MATHS 250, 260
2272

MATHS 362

: Methods in Applied Mathematics
2020 Semester Two (1205)
Covers a selection of techniques including the calculus of variations, asymptotic methods and models based on conservation laws. These methods are fundamental in the analysis of traffic flow, shocks, fluid flow, as well as in control theory, and the course is recommended for students intending to advance in Applied Mathematics. Recommended preparation: MATHS 253, 361.
Subject: Mathematics
Prerequisite:MATHS 250, 260
2273

MATHS 363

: Advanced Computational Mathematics
2025 Semester One (1253)
Finite element methods, calculus of variations and control theory are key mathematical tools used to model, compute approximations to model solutions and to understand the control of real-world phenomena. These topics share the same mathematical foundations and can all be described as variational methods. The course offers advanced techniques to handle complicated geometries and optimise desired objectives in applications modelled using differential equations. Recommended preparation: MATHS 253
Subject: Mathematics
Prerequisite: MATHS 260 and 270
2274

MATHS 363

: Advanced Computational Mathematics
2024 Semester One (1243)
Finite element methods, calculus of variations and control theory are key mathematical tools used to model, compute approximations to model solutions and to understand the control of real-world phenomena. These topics share the same mathematical foundations and can all be described as variational methods. The course offers advanced techniques to handle complicated geometries and optimise desired objectives in applications modelled using differential equations. Recommended preparation: MATHS 253
Subject: Mathematics
Prerequisite: MATHS 260 and 270
2275

MATHS 363

: Advanced Modelling and Computation
2023 Semester One (1233)
In real-world situations, the interesting and important variables are often not directly observable. To address this problem, mathematical models and quantities that are observable are usually employed to carry out inference on the variables of interest. This course is an introduction to fitting of models to (noisy) observational data and how to compute estimates for the interesting variables. Numerical methods for partial differential equations, which are commonly used as models for the observations, will also be covered.
Subject: Mathematics
Prerequisite: MATHS 260 and 270