New Online Course Catalogue will be available soon.
Search Course Outline
Showing 25 course outlines from 4702 matches
2401
MATHS 730
: Measure Theory and Integration2024 Semester One (1243)
Presents the modern elegant theory of integration as developed by Riemann and Lebesgue. This course includes powerful theorems for the interchange of integrals and limits, allowing very general functions to be integrated, and illustrates how the subject is both an essential tool for analysis and a critical foundation for the theory of probability. Strongly recommended: MATHS 333
Prerequisite: MATHS 332
2402
MATHS 730
: Measure Theory and Integration2023 Semester One (1233)
Presenting the modern elegant theory of integration as developed by Riemann and Lebesgue, it includes powerful theorems for the interchange of integrals and limits so allowing very general functions to be integrated, and illustrates how the subject is both an essential tool for analysis and a critical foundation for the theory of probability. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332
2403
MATHS 730
: Measure Theory and Integration2022 Semester One (1223)
Presenting the modern elegant theory of integration as developed by Riemann and Lebesgue, it includes powerful theorems for the interchange of integrals and limits so allowing very general functions to be integrated, and illustrates how the subject is both an essential tool for analysis and a critical foundation for the theory of probability. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332
2404
MATHS 730
: Measure Theory and Integration2021 Semester One (1213)
Presenting the modern elegant theory of integration as developed by Riemann and Lebesgue, it includes powerful theorems for the interchange of integrals and limits so allowing very general functions to be integrated, and illustrates how the subject is both an essential tool for analysis and a critical foundation for the theory of probability. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332
2405
MATHS 730
: Measure Theory and Integration2020 Semester One (1203)
Presenting the modern elegant theory of integration as developed by Riemann and Lebesgue, it includes powerful theorems for the interchange of integrals and limits so allowing very general functions to be integrated, and illustrates how the subject is both an essential tool for analysis and a critical foundation for the theory of probability. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332
2406
MATHS 731
: Functional Analysis2025 Semester Two (1255)
Provides the mathematical foundations behind some of the techniques used in applied mathematics and mathematical physics; it explores how many phenomena in physics can be described by the solution of a partial differential equation, for example the heat equation, the wave equation and Schrödinger's equation. Recommended preparation: MATHS 730 and 750.
Prerequisite: MATHS 332 and 333
2407
MATHS 731
: Functional Analysis2024 Semester Two (1245)
Provides the mathematical foundations behind some of the techniques used in applied mathematics and mathematical physics; it explores how many phenomena in physics can be described by the solution of a partial differential equation, for example the heat equation, the wave equation and Schrödinger's equation. Recommended preparation: MATHS 730 and 750.
Prerequisite: MATHS 332 and 333
2408
MATHS 731
: Functional Analysis2023 Semester Two (1235)
Provides the mathematical foundations behind some of the techniques used in applied mathematics and mathematical physics; it explores how many phenomena in physics can be described by the solution of a partial differential equation, for example the heat equation, the wave equation and Schrödinger's equation. Recommended preparation: MATHS 730 and 750.
Prerequisite: MATHS 332 and 333
2409
MATHS 731
: Functional Analysis2022 Semester Two (1225)
Provides the mathematical foundations behind some of the techniques used in applied mathematics and mathematical physics; it explores how many phenomena in physics can be described by the solution of a partial differential equation, for example the heat equation, the wave equation and Schrödinger's equation. Recommended preparation: MATHS 730 and 750.
Prerequisite: MATHS 332 and 333
2410
MATHS 731
: Functional Analysis2021 Semester Two (1215)
Provides the mathematical foundations behind some of the techniques used in applied mathematics and mathematical physics; it explores how many phenomena in physics can be described by the solution of a partial differential equation, for example the heat equation, the wave equation and Schrödinger's equation. Recommended preparation: MATHS 730 and 750.
Prerequisite: MATHS 332 and 333
2411
MATHS 731
: Functional Analysis2020 Semester Two (1205)
Provides the mathematical foundations behind some of the techniques used in applied mathematics and mathematical physics; it explores how many phenomena in physics can be described by the solution of a partial differential equation, for example the heat equation, the wave equation and Schrödinger's equation. Recommended preparation: MATHS 730 and 750.
Prerequisite: MATHS 332 and 333
2412
MATHS 734
: Algebraic Geometry2023 Semester Two (1235)
Algebraic geometry is a branch of mathematics studying zeros of polynomials. The fundamental objects in algebraic geometry are algebraic varieties i.e., solution sets of systems of polynomial equations.
Prerequisite: MATHS 332 and at least one of MATHS 320, 328
Restriction: MATHS 334
Restriction: MATHS 334
2413
MATHS 734
: Algebraic Geometry2021 Semester Two (1215)
Algebraic geometry is a branch of mathematics studying zeros of polynomials. The fundamental objects in algebraic geometry are algebraic varieties i.e., solution sets of systems of polynomial equations.
Prerequisite: MATHS 332 and at least one of MATHS 320, 328
Restriction: MATHS 334
Restriction: MATHS 334
2414
MATHS 735
: Analysis on Manifolds and Differential Geometry2024 Semester One (1243)
Studies surfaces and their generalisations, smooth manifolds, and the interaction between geometry, analysis and topology; it is a central tool in many areas of mathematics, physics and engineering. Topics include Stokes' theorem on manifolds and the celebrated Gauss Bonnet theorem. Strongly recommended: MATHS 333 and 340.
Prerequisite: MATHS 332
2415
MATHS 735
: Analysis on Manifolds and Differential Geometry2022 Semester One (1223)
Studies surfaces and their generalisations, smooth manifolds, and the interaction between geometry, analysis and topology; it is a central tool in many areas of mathematics, physics and engineering. Topics include Stokes' theorem on manifolds and the celebrated Gauss Bonnet theorem. Strongly recommended: MATHS 333 and 340.
Prerequisite: MATHS 332
2416
MATHS 735
: Analysis on Manifolds and Differential Geometry2020 Semester One (1203)
Studies surfaces and their generalisations, smooth manifolds, and the interaction between geometry, analysis and topology; it is a central tool in many areas of mathematics, physics and engineering. Topics include Stokes' theorem on manifolds and the celebrated Gauss Bonnet theorem. Strongly recommended: MATHS 333 and 340.
Prerequisite: MATHS 332
2417
MATHS 740
: Complex Analysis2025 Semester One (1253)
An introduction to functions of one complex variable, including Cauchy's integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332
Restriction: MATHS 341
Restriction: MATHS 341
2418
MATHS 740
: Complex Analysis2023 Semester One (1233)
An introduction to functions of one complex variable, including Cauchy's integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332
Restriction: MATHS 341
Restriction: MATHS 341
2419
MATHS 740
: Complex Analysis2021 Semester One (1213)
An introduction to functions of one complex variable, including Cauchy's integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332
Restriction: MATHS 341
Restriction: MATHS 341
2420
MATHS 750
: Topology2024 Semester Two (1245)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrization, covering spaces, the fundamental group and homology theory. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332
Restriction: MATHS 350
Restriction: MATHS 350
2421
MATHS 750
: Topology2022 Semester Two (1225)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrization, covering spaces, the fundamental group and homology theory. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332
Restriction: MATHS 350
Restriction: MATHS 350
2422
MATHS 750
: Topology2020 Semester Two (1205)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrization, covering spaces, the fundamental group and homology theory. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332
Restriction: MATHS 350
Restriction: MATHS 350
2423
MATHS 761
: Dynamical Systems2025 Semester One (1253)
Mathematical models of systems that change are frequently written in the form of nonlinear differential equations, but it is usually not possible to write down explicit solutions to these equations. This course covers analytical and numerical techniques that are useful for determining the qualitative properties of solutions to nonlinear differential equations.
Prerequisite: B- in both MATHS 340 and 361
2424
MATHS 761
: Dynamical Systems2024 Semester One (1243)
Mathematical models of systems that change are frequently written in the form of nonlinear differential equations, but it is usually not possible to write down explicit solutions to these equations. This course covers analytical and numerical techniques that are useful for determining the qualitative properties of solutions to nonlinear differential equations.
Prerequisite: B- in both MATHS 340 and 361
2425
MATHS 761
: Dynamical Systems2023 Semester One (1233)
Mathematical models of systems that change are frequently written in the form of nonlinear differential equations, but it is usually not possible to write down explicit solutions to these equations. This course covers analytical and numerical techniques that are useful for determining the qualitative properties of solutions to nonlinear differential equations.
Prerequisite: B- in both MATHS 340 and 361
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189