Search Course Outline

Showing 25 course outlines from 4498 matches

3376

STATS 330

: Statistical Modelling
2020 Semester One (1203)
Application of the generalised linear model and extensions to fit data arising from a range of sources including multiple regression models, logistic regression models, and log-linear models. The graphical exploration of data.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3377

STATS 331

: Introduction to Bayesian Statistics
2025 Semester Two (1255)
Introduces Bayesian data analysis using the WinBUGS software package and R. Topics include the Bayesian paradigm, hypothesis testing, point and interval estimates, graphical models, simulation and Bayesian inference, diagnosing MCMC, model checking and selection, ANOVA, regression, GLMs, hierarchical models and time series. Classical and Bayesian methods and interpretations are compared.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 263, STATS 201, 208 and 15 points from ENGSCI 111, ENGGEN 150, STATS 125
3378

STATS 331

: Introduction to Bayesian Statistics
2024 Semester Two (1245)
Introduces Bayesian data analysis using the WinBUGS software package and R. Topics include the Bayesian paradigm, hypothesis testing, point and interval estimates, graphical models, simulation and Bayesian inference, diagnosing MCMC, model checking and selection, ANOVA, regression, GLMs, hierarchical models and time series. Classical and Bayesian methods and interpretations are compared.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3379

STATS 331

: Introduction to Bayesian Statistics
2023 Semester Two (1235)
Introduces Bayesian data analysis using the WinBUGS software package and R. Topics include the Bayesian paradigm, hypothesis testing, point and interval estimates, graphical models, simulation and Bayesian inference, diagnosing MCMC, model checking and selection, ANOVA, regression, GLMs, hierarchical models and time series. Classical and Bayesian methods and interpretations are compared.
Subject: Statistics
Prerequisite: ENGSCI 314 or STATS 201 or 208
3380

STATS 331

: Introduction to Bayesian Statistics
2022 Semester Two (1225)
Introduces Bayesian data analysis using the WinBUGS software package and R. Topics include the Bayesian paradigm, hypothesis testing, point and interval estimates, graphical models, simulation and Bayesian inference, diagnosing MCMC, model checking and selection, ANOVA, regression, GLMs, hierarchical models and time series. Classical and Bayesian methods and interpretations are compared.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3381

STATS 331

: Introduction to Bayesian Statistics
2021 Semester Two (1215)
Introduces Bayesian data analysis using the WinBUGS software package and R. Topics include the Bayesian paradigm, hypothesis testing, point and interval estimates, graphical models, simulation and Bayesian inference, diagnosing MCMC, model checking and selection, ANOVA, regression, GLMs, hierarchical models and time series. Classical and Bayesian methods and interpretations are compared.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3382

STATS 331

: Introduction to Bayesian Statistics
2020 Semester Two (1205)
Introduces Bayesian data analysis using the WinBUGS software package and R. Topics include the Bayesian paradigm, hypothesis testing, point and interval estimates, graphical models, simulation and Bayesian inference, diagnosing MCMC, model checking and selection, ANOVA, regression, GLMs, hierarchical models and time series. Classical and Bayesian methods and interpretations are compared.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, BIOSCI 209
3383

STATS 369

: Data Science Practice
2025 Semester Two (1255)
Modern predictive modelling techniques, with application to realistically large data sets. Case studies will be drawn from business, industrial, and government applications.
Subject: Statistics
Prerequisite: STATS 220 and STATS 210 or 225 and 15 points from ECON 221, STATS 201, 208, or ENGSCI 233 and 263
Restriction: STATS 765
3384

STATS 369

: Data Science Practice
2024 Semester Two (1245)
Modern predictive modelling techniques, with application to realistically large data sets. Case studies will be drawn from business, industrial, and government applications.
Subject: Statistics
Prerequisite: STATS 220 and STATS 210 or 225 and 15 points from ECON 221, STATS 201, 208, or ENGSCI 233 and 263
Restriction: STATS 765
3385

STATS 369

: Data Science Practice
2023 Semester Two (1235)
Modern predictive modelling techniques, with application to realistically large data sets. Case studies will be drawn from business, industrial, and government applications.
Subject: Statistics
Prerequisite: STATS 220 and STATS 210 or 225 and 15 points from ECON 221, STATS 201, 208, or ENGSCI 314
Restriction: STATS 765
3386

STATS 369

: Data Science Practice
2022 Semester Two (1225)
Modern predictive modelling techniques, with application to realistically large data sets. Case studies will be drawn from business, industrial, and government applications.
Subject: Statistics
Prerequisite: STATS 220, and STATS 210 or 225, and 15 points from BIOSCI 209, ECON 221, STATS 201, 207, 208
Restriction: STATS 765
3387

STATS 369

: Data Science Practice
2021 Semester Two (1215)
Modern predictive modelling techniques, with application to realistically large data sets. Case studies will be drawn from business, industrial, and government applications.
Subject: Statistics
Prerequisite: 15 points from BIOSCI 209, ECON 211, STATS 201, 207, 208, and STATS 210 or 225
Restriction: STATS 765
3388

STATS 369

: Data Science Practice
2020 Semester Two (1205)
Modern predictive modelling techniques, with application to realistically large data sets. Case studies will be drawn from business, industrial, and government applications.
Subject: Statistics
Prerequisite: STATS 220, 201 or 208, 210 or 225
Restriction: STATS 765
3389

STATS 370

: Financial Mathematics
2024 Semester Two (1245)
Mean-variance portfolio theory; options, arbitrage and put-call relationships; introduction of binomial and Black-Scholes option pricing models; compound interest, annuities, capital redemption policies, valuation of securities, sinking funds; varying rates of interest, taxation; duration and immunisation; introduction to life annuities and life insurance mathematics.
Subject: Statistics
Prerequisite: 15 points at Stage II in Mathematics and 15 points at Stage II in Statistics
Restriction: STATS 722
3390

STATS 370

: Financial Mathematics
2023 Semester Two (1235)
Mean-variance portfolio theory; options, arbitrage and put-call relationships; introduction of binomial and Black-Scholes option pricing models; compound interest, annuities, capital redemption policies, valuation of securities, sinking funds; varying rates of interest, taxation; duration and immunisation; introduction to life annuities and life insurance mathematics.
Subject: Statistics
Prerequisite: 15 points at Stage II in Mathematics and 15 points at Stage II in Statistics
Restriction: STATS 722
3391

STATS 370

: Financial Mathematics
2022 Semester Two (1225)
Mean-variance portfolio theory; options, arbitrage and put-call relationships; introduction of binomial and Black-Scholes option pricing models; compound interest, annuities, capital redemption policies, valuation of securities, sinking funds; varying rates of interest, taxation; duration and immunisation; introduction to life annuities and life insurance mathematics.
Subject: Statistics
Prerequisite: 15 points at Stage II in Statistics or BIOSCI 209; 15 points at Stage II in Mathematics
Restriction: STATS 722
3392

STATS 370

: Financial Mathematics
2020 Semester Two (1205)
Mean-variance portfolio theory; options, arbitrage and put-call relationships; introduction of binomial and Black-Scholes option pricing models; compound interest, annuities, capital redemption policies, valuation of securities, sinking funds; varying rates of interest, taxation; duration and immunisation; introduction to life annuities and life insurance mathematics.
Subject: Statistics
Prerequisite: 15 points at Stage II in Statistics or BIOSCI 209; 15 points at Stage II in Mathematics
Restriction: STATS 722
3393

STATS 380

: Statistical Computing
2025 Semester Two (1255)
Statistical programming using the R computing environment. Data structures, numerical computing and graphics.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 314, STATS 201, 208, 220
3394

STATS 380

: Statistical Computing
2025 Semester One (1253)
Statistical programming using the R computing environment. Data structures, numerical computing and graphics.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 314, STATS 201, 208, 220
3395

STATS 380

: Statistical Computing
2024 Semester Two (1245)
Statistical programming using the R computing environment. Data structures, numerical computing and graphics.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 314, STATS 201, 208, 220
3396

STATS 380

: Statistical Computing
2024 Semester One (1243)
Statistical programming using the R computing environment. Data structures, numerical computing and graphics.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 314, STATS 201, 208, 220
3397

STATS 380

: Statistical Computing
2023 Semester Two (1235)
Statistical programming using the R computing environment. Data structures, numerical computing and graphics.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 314, STATS 201, 208, 220
3398

STATS 380

: Statistical Computing
2023 Semester One (1233)
Statistical programming using the R computing environment. Data structures, numerical computing and graphics.
Subject: Statistics
Prerequisite: 15 points from ENGSCI 314, STATS 201, 208, 220
3399

STATS 380

: Statistical Computing
2022 Semester Two (1225)
Statistical programming using the R computing environment. Data structures, numerical computing and graphics.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, 220, BIOSCI 209
3400

STATS 380

: Statistical Computing
2021 Semester Two (1215)
Statistical programming using the R computing environment. Data structures, numerical computing and graphics.
Subject: Statistics
Prerequisite: 15 points from STATS 201, 207, 208, 220, BIOSCI 209