Search Course Outline
Showing 25 course outlines from 4474 matches
2251
MATHS 332
: Real Analysis2022 Semester Two (1225)
A standard course for every student intending to advance in pure mathematics. It develops the foundational mathematics underlying calculus, it introduces a rigorous approach to continuous mathematics and fosters an understanding of the special thinking and arguments involved in this area. The main focus is analysis in one real variable with the topics including real fields, limits and continuity, Riemann integration and power series.
Prerequisite: MATHS 250 and 254 or 255
2252
MATHS 332
: Real Analysis2021 Semester Two (1215)
A standard course for every student intending to advance in pure mathematics. It develops the foundational mathematics underlying calculus, it introduces a rigorous approach to continuous mathematics and fosters an understanding of the special thinking and arguments involved in this area. The main focus is analysis in one real variable with the topics including real fields, limits and continuity, Riemann integration and power series.
Prerequisite: MATHS 250, and MATHS 254 or 255 or an A or higher in MATHS 253 and 260
2253
MATHS 332
: Real Analysis2020 Semester Two (1205)
A standard course for every student intending to advance in pure mathematics. It develops the foundational mathematics underlying calculus, it introduces a rigorous approach to continuous mathematics and fosters an understanding of the special thinking and arguments involved in this area. The main focus is analysis in one real variable with the topics including real fields, limits and continuity, Riemann integration and power series.
Prerequisite: MATHS 250, and MATHS 254 or 255 or an A or higher in MATHS 253 and 260
2254
MATHS 333
: Analysis in Higher Dimensions2025 Semester One (1253)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. This course examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332 or a B or higher in MATHS 254
2255
MATHS 333
: Analysis in Higher Dimensions2024 Semester One (1243)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. This course examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332 or a B or higher in MATHS 254
2256
MATHS 333
: Analysis in Higher Dimensions2023 Semester One (1233)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332 or a B or higher in MATHS 254
2257
MATHS 333
: Analysis in Higher Dimensions2022 Semester One (1223)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332 or a B or higher in MATHS 254
2258
MATHS 333
: Analysis in Higher Dimensions2021 Semester One (1213)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332
2259
MATHS 333
: Analysis in Higher Dimensions2020 Semester One (1203)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Prerequisite: MATHS 332
2260
MATHS 334
: Algebraic Geometry2023 Semester Two (1235)
Algebraic geometry is a branch of mathematics studying zeros of polynomials. The fundamental objects in algebraic geometry are algebraic varieties i.e., solution sets of systems of polynomial equations.
Prerequisite: MATHS 332, and at least one of MATHS 320, 328 and Departmental approval
Restriction: MATHS 734
Restriction: MATHS 734
2261
MATHS 334
: Algebraic Geometry2021 Semester Two (1215)
Algebraic geometry is a branch of mathematics studying zeros of polynomials. The fundamental objects in algebraic geometry are algebraic varieties i.e., solution sets of systems of polynomial equations.
Prerequisite: MATHS 332, and at least one of MATHS 320, 328 and Departmental approval
Restriction: MATHS 734
Restriction: MATHS 734
2262
MATHS 340
: Real and Complex Calculus2025 Semester Two (1255)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. This course extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253
Prerequisite: MATHS 250
2263
MATHS 340
: Real and Complex Calculus2024 Semester Two (1245)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. This course extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253
Prerequisite: MATHS 250
2264
MATHS 340
: Real and Complex Calculus2023 Semester Two (1235)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250
2265
MATHS 340
: Real and Complex Calculus2022 Semester Two (1225)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250
2266
MATHS 340
: Real and Complex Calculus2021 Semester Two (1215)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250
2267
MATHS 340
: Real and Complex Calculus2020 Semester Two (1205)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Prerequisite: MATHS 250
2268
MATHS 341
: Complex Analysis2025 Semester One (1253)
Explores functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three-line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
Restriction: MATHS 740
2269
MATHS 341
: Complex Analysis2023 Semester One (1233)
Functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
Restriction: MATHS 740
2270
MATHS 341
: Complex Analysis2021 Semester One (1213)
Functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
Restriction: MATHS 740
2271
MATHS 350
: Topology2024 Semester Two (1245)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
Restriction: MATHS 750
2272
MATHS 350
: Topology2022 Semester Two (1225)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
Restriction: MATHS 750
2273
MATHS 350
: Topology2020 Semester Two (1205)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
Restriction: MATHS 750
2274
MATHS 361
: Partial Differential Equations2025 Semester One (1253)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers linear PDEs, analytical methods for their solution and weak solutions. Recommended preparation: MATHS 253
Prerequisite: MATHS 250, 260
2275
MATHS 361
: Partial Differential Equations2024 Semester One (1243)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers linear PDEs, analytical methods for their solution and weak solutions. Recommended preparation: MATHS 253
Prerequisite: MATHS 250, 260
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179