Search Course Outline

Showing 25 course outlines from 4474 matches

2251

MATHS 332

: Real Analysis
2022 Semester Two (1225)
A standard course for every student intending to advance in pure mathematics. It develops the foundational mathematics underlying calculus, it introduces a rigorous approach to continuous mathematics and fosters an understanding of the special thinking and arguments involved in this area. The main focus is analysis in one real variable with the topics including real fields, limits and continuity, Riemann integration and power series.
Subject: Mathematics
Prerequisite: MATHS 250 and 254 or 255
2252

MATHS 332

: Real Analysis
2021 Semester Two (1215)
A standard course for every student intending to advance in pure mathematics. It develops the foundational mathematics underlying calculus, it introduces a rigorous approach to continuous mathematics and fosters an understanding of the special thinking and arguments involved in this area. The main focus is analysis in one real variable with the topics including real fields, limits and continuity, Riemann integration and power series.
Subject: Mathematics
Prerequisite: MATHS 250, and MATHS 254 or 255 or an A or higher in MATHS 253 and 260
2253

MATHS 332

: Real Analysis
2020 Semester Two (1205)
A standard course for every student intending to advance in pure mathematics. It develops the foundational mathematics underlying calculus, it introduces a rigorous approach to continuous mathematics and fosters an understanding of the special thinking and arguments involved in this area. The main focus is analysis in one real variable with the topics including real fields, limits and continuity, Riemann integration and power series.
Subject: Mathematics
Prerequisite: MATHS 250, and MATHS 254 or 255 or an A or higher in MATHS 253 and 260
2254

MATHS 333

: Analysis in Higher Dimensions
2025 Semester One (1253)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. This course examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Subject: Mathematics
Prerequisite: MATHS 332 or a B or higher in MATHS 254
2255

MATHS 333

: Analysis in Higher Dimensions
2024 Semester One (1243)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. This course examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Subject: Mathematics
Prerequisite: MATHS 332 or a B or higher in MATHS 254
2256

MATHS 333

: Analysis in Higher Dimensions
2023 Semester One (1233)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Subject: Mathematics
Prerequisite: MATHS 332 or a B or higher in MATHS 254
2257

MATHS 333

: Analysis in Higher Dimensions
2022 Semester One (1223)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Subject: Mathematics
Prerequisite: MATHS 332 or a B or higher in MATHS 254
2258

MATHS 333

: Analysis in Higher Dimensions
2021 Semester One (1213)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Subject: Mathematics
Prerequisite: MATHS 332
2259

MATHS 333

: Analysis in Higher Dimensions
2020 Semester One (1203)
By selecting the important properties of distance many different mathematical contexts are studied simultaneously in the framework of metric and normed spaces. Examines carefully the ways in which the derivative generalises to higher dimensional situations. These concepts lead to precise studies of continuity, fixed points and the solution of differential equations. A recommended course for all students planning to advance in pure mathematics.
Subject: Mathematics
Prerequisite: MATHS 332
2260

MATHS 334

: Algebraic Geometry
2023 Semester Two (1235)
Algebraic geometry is a branch of mathematics studying zeros of polynomials. The fundamental objects in algebraic geometry are algebraic varieties i.e., solution sets of systems of polynomial equations.
Subject: Mathematics
Prerequisite: MATHS 332, and at least one of MATHS 320, 328 and Departmental approval
Restriction: MATHS 734
2261

MATHS 334

: Algebraic Geometry
2021 Semester Two (1215)
Algebraic geometry is a branch of mathematics studying zeros of polynomials. The fundamental objects in algebraic geometry are algebraic varieties i.e., solution sets of systems of polynomial equations.
Subject: Mathematics
Prerequisite: MATHS 332, and at least one of MATHS 320, 328 and Departmental approval
Restriction: MATHS 734
2262

MATHS 340

: Real and Complex Calculus
2025 Semester Two (1255)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. This course extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253
Subject: Mathematics
Prerequisite: MATHS 250
2263

MATHS 340

: Real and Complex Calculus
2024 Semester Two (1245)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. This course extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253
Subject: Mathematics
Prerequisite: MATHS 250
2264

MATHS 340

: Real and Complex Calculus
2023 Semester Two (1235)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250
2265

MATHS 340

: Real and Complex Calculus
2022 Semester Two (1225)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250
2266

MATHS 340

: Real and Complex Calculus
2021 Semester Two (1215)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250
2267

MATHS 340

: Real and Complex Calculus
2020 Semester Two (1205)
Calculus plays a fundamental role in mathematics, answering deep theoretical problems and allowing us to solve very practical problems. Extends the ideas of calculus to two and higher dimensions, showing how to calculate integrals and derivatives in higher dimensions and exploring special relationships between integrals of different dimensions. It also extends calculus to complex variables. Recommended preparation: MATHS 253.
Subject: Mathematics
Prerequisite: MATHS 250
2268

MATHS 341

: Complex Analysis
2025 Semester One (1253)
Explores functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three-line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
2269

MATHS 341

: Complex Analysis
2023 Semester One (1233)
Functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
2270

MATHS 341

: Complex Analysis
2021 Semester One (1213)
Functions of one complex variable, including Cauchy’s integral formula, the index formula, Laurent series and the residue theorem. Many applications are given including a three line proof of the fundamental theorem of algebra. Complex analysis is used extensively in engineering, physics and mathematics. Strongly recommended: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 740
2271

MATHS 350

: Topology
2024 Semester Two (1245)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
2272

MATHS 350

: Topology
2022 Semester Two (1225)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
2273

MATHS 350

: Topology
2020 Semester Two (1205)
Aspects of point-set, set-theoretic and algebraic topology including: properties and construction of topological spaces, continuous functions, axioms of separation, countability, connectivity and compactness, metrisation, covering spaces, the fundamental group and homology theory. Recommended preparation: MATHS 333.
Subject: Mathematics
Prerequisite: MATHS 332 and Departmental approval
Restriction: MATHS 750
2274

MATHS 361

: Partial Differential Equations
2025 Semester One (1253)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers linear PDEs, analytical methods for their solution and weak solutions. Recommended preparation: MATHS 253
Subject: Mathematics
Prerequisite: MATHS 250, 260
2275

MATHS 361

: Partial Differential Equations
2024 Semester One (1243)
Partial differential equations (PDEs) are used to model many important applications of phenomena in the real world such as electric fields, diffusion and wave propagation. Covers linear PDEs, analytical methods for their solution and weak solutions. Recommended preparation: MATHS 253
Subject: Mathematics
Prerequisite: MATHS 250, 260